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Chapter 1 
 

Logic and the Challenge of Computer Science* 
 

YURI GUREVICH† 

 

Abstract—Nowadays computer science is surpassing mathematics as the primary 
field of logic applications, but logic is not tuned properly to the new role. In 
particular, classical logic is preoccupied mostly with infinite static structures 
whereas many objects of interest in computer science are dynamic objects with 
bounded resources. This chapter consists of two independent parts. The first part is 
devoted to finite model theory; it is mostly a survey of logics tailored for 
computational complexity. The second part is devoted to dynamic structures with 
bounded resources. In particular, we use dynamic structures with bounded 
resources to model Pascal. 

INTRODUCTION 

These days computer science is characterized by an explosive growth in activities 
intimately related to logic. Consider for example formal languages. For years 
formal languages were in the private domain of logicians. But what formal 
language is most popular today? Is it a Hilbert type predicate calculus or the 
Genzen sequent calculus? Neither. The most popular formal languages of today 
are programming languages. Another kind of popular formal languages are da-
tabase query languages. Some other formal languages emerge in artificial intel-
ligence like languages for knowledge representation. Old discussions on names, 
denotations, types, etc. are suddenly revitalized to unprecedented magnitude. 
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   The work on axiomatic semantics, logic programming and verification is related 
to classical proof theory; the work on computational complexity is related to the 
classical theory of algorithms. Even propositional logic is not left untouched by 
developments in computer science; for almost any number k between 3 and 20, 
there is a commercial logic circuit simulator based on k-valued logic (41). 

   This is altogether good news for logicians. Logic grows more relevant to 
computer science than any other part of mathematics. But the new applications 
call, we believe, for new developments in logic proper. First-order predicate 
calculus and its usual generalizations are not sufficient to support the new ap-
plications. On the other hand, the new developments will most probably build on 
existing achievements of logic. In this connection it is worth trying to understand 
what made classical mathematical logic so successful. 

   Even though logic is an ancient subject, the origins of modern mathematical 
logic are closely related to the discovery of paradoxes and the subsequent crisis in 
the foundations of mathematics (47). In 1930 came the triumph of Gödel’s 
completeness theorem. The syntax of first-order predicate calculus and its se-
mantics were proven to match perfectly. In addition first-order logic was re-
strictive enough to avoid paradoxes and expressive enough to provide a basis for 
Zermelo-Fraenkel set theory and resolve this way, to a large extent, the 
foundational crisis. This perfect match of syntax and semantics together with a 
reasonable expressive power made first-order logic an invaluable tool and a source 
of innumerable generalizations. 

   Extremely important features of first-order logic are a formal language and a 
clear notion of models. The models are so-called first-order structures or, simply, 
structures. (Some people object to the term "first-order structure" on the ground 
that logic is first-order rather than structures. This is a good point. But some 
structures are not first-order, topological spaces for example; and we all know 
exactly what first-order structures are.) This familiar pattern—a formal language 
with well-defined models—persists through familiar generalizations of first-order 
logic. 

   Let us mention another interesting feature of first-order logic. Even though a 
consistent first-order theory has usually a multitude of models, the theory itself 
does not refer directly to different models; it "speaks" about "the" model of 
discourse. 

   Classical logic facilitated numerous and impressive achievements. Let us men-
tion only the Church-Turing thesis and the Gödel-Cohen resolution of the con-
tinuum hypothesis. It seems that we (the logicians) were somewhat hypnotized by 
the success of classical systems. We used first-order logic where it fits well and 
where it fits not so well. We went on working on computability without paying 
adequate attention to feasibility. One seemingly obvious but nevertheless 
important lesson is that different applications may require formalizations of 
different kinds. It is necessary to "listen" to the subject in order to come up with 
the right formalization. (We philosophized on this topic in [30].) 
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   An important feature of many computer science objects is finiteness. Relational 
databases constitute an especially important example. Finiteness does not seem to 
be such a great novelty in classical logic. Nevertheless it poses a nontrivial 
challenge. Being so closely related to foundations of mathematics, classical logic 
is preoccupied with infinity. Many famous theorems collapse when only finite 
structures are allowed; among them are Gödel’s Completeness Theorem, Craig's 
Interpolation Theorem, Bern's Definability Theorem and the Substructure Pres-
ervation Theorem (29). 

   Variants of first-order logic serve as standard relational query languages (15, 
67), but the expressive power of first-order logic is not sufficient for many 
purposes (2). On the other hand, second-order logic is overly expressive. It 
expresses queries that are too hard to compute. Even existential monadic second-
order formulas can express NP complete queries. Of course, the notion of what is 
hard may change from one application to another. One idea is to fix a reasonable 
complexity class, like polynomial time, and to devise an intermediate logic that 
"captures" this complexity class i.e. expresses exactly the queries of that com-
plexity. The idea happens to be realizable to an extent. The pioneering papers 
include those of Aho and Ullman (2), Chandra and Harel (12b), Fagin (20), 
Immerman (44), and Vardi (68). In particular, Immerman and Vardi proved that, 
in the presence of linear order, the least-fixed-point extension of first-order logic 
captures polynomial time. The program of designing logics to capture complexity 
classes was clearly spelled out in (45) where Immerman captured log-space and a 
number of other natural complexity classes. We have written on finite model 
theory and logic tailored for complexity in different places; see in particular (29). 

   Part 1 (Sections 1-9) of this chapter is devoted to finite model theory; it is mostly 
a subjective survey of logics tailored for computational complexity. Section 1 
contains provisos and definitions that are used throughout Part 1. In particular, the 
notions of global relations and global functions are introduced; these notions 
provide convenient semantics for complexity tailored logics. In Sections 2, 3, 4 
and 6 we consider different extensions of first-order logic by additional constructs; 
in the presence of linear order the extended logics capture natural complexity 
classes. In Section 5 we consider two logics with an emphasis on functions rather 
than predicates; a linear order is built in, and the logics capture log-space and 
polynomial time respectively. Section 7 is devoted to those properties of structures 
which do not depend on presentation. In Section 8, some evidence is given that 
certain familiar complexity classes cannot be captured by any logic. Circuit 
definability and topology on finite sets are briefly discussed in Section 9. 

Remark   Several relevant issues are left out in this survey. In particular, we do 
not discuss derivability in first-order predicate calculus. The questions of 
expressibility and derivability are quite different. For example, no first-order 
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formula φ expresses on finite graphs that (x, y) belongs to the transitive closure of 
the edge relation E. This is well known (21, 23, 29) and remains true even if φ is 
allowed to use additional predicate symbols: just consider the case when all 
additional relations are trivial. On the other hand, the first-order formula 

           [�uv(Euv → Tuv) & �uvw(Euv & Tvw → Tuw)] → T(x,y) 

is derivable from the diagram of an arbitrary finite graph if and only if (x, y) 
belongs to the transitive closure of the edge relation E. 

   Another important feature of many computer science structures, which is harder 
to swallow, is their dynamic character. Mathematical structures (graphs, groups, 
topological spaces, etc.) do not change in time whereas computer science objects 
(databases, machines) often do. Considering time as a new dimension, a 
mathematician turns a dynamic situation into a static one. Complexity consid-
erations may make such a transformation inadvisable in computer science (see 
Section 10 in this connection). 

   In Part 2 of this chapter we generalize the static structures of mathematical logic 
to dynamic structures. We are especially interested in dynamic structures with 
bounded resources. In Section 10, among other things, we discuss the adaptation 
of Turing's thesis to the case of machines with bounded resources. In Section 11, 
on the example of Pascal, we demonstrate an approach to semantics based on 
dynamic structures. 

   There are still mathematicians that consider computer science a lower subject. 
There are former logicians that work now in computer science or computer 
applications and consider logic not very relevant to their new occupation. We 
happen to think that computer science badly needs what logicians are supposed to 
do best: logic. The situation seems to us reminiscent of that in the beginning of the 
century. Again we face most basic questions like what is the right logic and even 
what are the right structures. 

Acknowledgements. This chapter grew out of my part in the Course on Com-
putation Theory in the International Center for Mechanical Sciences, Udine, Italy 
in September-October 1984. I am happy to thank the organizer—Dr. Egon 
Börger—and the Center for the invitation, and the listeners for their attention, 
good will and hard work. Special thanks are due to Dr. Klaus Ambos-Spies who 
faithfully recorded my lectures. An edited version of the lectures was published as 
a technical report (32). I am thankful to John Holland for his comments on the 
report. In Summer and Fall of 1986, the report was updated; in particular, Section 
10 was enhanced and Section 11 was added. These two sections carry their own 
acknowledgements, but I am only too glad to repeat here that I am thankful to Kit 
Fine, Bernie Galler, David Gries, Albert Meyer, and Jim Morris. Finally, it gives 
me special pleasure to thank Andreas Blass for his numerous comments and many 
clarifying enjoyable discussions. 
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PART 1.    FINITE MODEL THEORY 

 

SECTION 1.    GLOBAL RELATIONS AND FUNCTIONS 

This section is devoted primarily to the notions of global relations and global 
functions which will be used to provide semantics for numerous logics. The 
section contains a number of definitions, two principles and one proviso that will 
be widely used throughout Part 1. 

The notions of global relations and global functions were introduced in (28). To 
motivate the definition of a global relation, let us consider a formula φ(x,y), with 
two free individual variables, in the first-order language of graphs. What is the 
meaning of φ(x,y)? Is it a binary relation? Well, it is and it is not. Given a graph, 
one can interpret φ(x,y) as a binary relation. In general, φ(x,y) can be interpreted as 
a function that assigns a binary relation to each graph. Such functions will be 
called global relations. 

Definition 1.1 Let K be a class of first-order structures of some signature 
(vocabulary) σ. An  r-ary K-global relation ρ assigns to each structure S in K an r-
ary relation ρs on S; the relation ρs is the specialization of ρ to S. The signature σ is 
the signature of ρ. If K is the class of all permissible σ-structures we say that p is 
σ-global. 

   Right now all structures are permissible. Later we will permit only finite 
structures satisfying some additional restrictions. 

   The notion of global relations generalizes Tarski's notion of sentential functions 
(62). Sentential functions are global relations of arity zero. In a sense, the notion of 
global relations reduces to the notion of sentential functions: an r-ary global 
relation of signature σ can be viewed as a sentential function whose signature is an 
extension of σ by r additional individual constants. But it is more convenient to 
work directly with global relations. 

   Tarski's semantics for first-order logic can be conveniently formulated in terms 
of global relations (disallow function symbols for a moment). The meaning of a 
first-order formula φ with r free individual variables is a σ-global r-ary relation 
where σ is the signature (vocabulary) of φ, i.e., the set of predicate symbols in φ. 
The meaning is defined by an obvious induction. 

Remark  There is one relatively minor issue that we are going to ignore. Different 
orderings of the free individual variables of a first-order formula give different 
global relations. One way to resolve this difficulty is to stick to the lexicographical 
ordering of individual variables. Another possibility is to use a more explicit 
notation like {(x1 . . . , xn): φ}. 
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Examples of global relations: 

1. Let GRAPH be the class of finite graphs seen as structures with exactly one 
relation which is binary, irreflexive and symmetric. The following GRAPH-
global relations are of arities 0, 1, and 2, respectively:  

        The graph is connected,  
        Node x has at most log n neighbors where n is the number of nodes,      
        There is a path from node x to node y. 

2. Let GROUP be the class of finite groups. The following GROUP-global 
relations are of arities 0,1, and 3, respectively:  

       The group is abelian, 
       The index of the subgroup, generated by element x, is at most log n where     
        n is the number of elements,  
       The subgroup generated by elements x and y contains element z. 

Definition 1.2  Let K be a class of structures of some signature σ A K-global 
function f of type (Universe)r → Universe assigns to each structure S in K an r-ary 
function f S  that, given an r-tuple of elements of S, produces an element of S. The 
signature σ is the signature of  f. 

   First-order terms denote global functions. In the obvious way, global relations 
and global functions of types (Universe)r → Universe provide semantics for first-
order logic with function symbols. (View individual constants as zero-ary 
functions.) 

   We will keep the notion of global functions informal (and very general) and will 
deal only with global functions of specific types. In particular, an r-ary global 
relation is a global function of type Universer → Bool where Bool is the set of the 
two truth values. A K-global function f of type (Universe)p → (Universe)q assigns 
to each S in K a function  f S  that, given a p-tuple of elements of S, produces a q-
tuple of elements of S; we say that f, as well as each specialization f S  of f, is p-ary 
and q-coary. The notion of a K-global partial function f of type (Universe)p → 
(Universe)q is an obvious generalization; f itself is total (defined on the whole K) 
but its specializations may be partial. Other possible types of global function 
include 

                         [(Universe)p → Bool] → [(Universe)q → Bool],     and               

                         [(Universe)p × (Power-Set(Universe))q] → Bool. 

   The latter is the type of second-order formulas with p free individual variables 
and q free predicate variables that are all monadic. The meaning of any second-
order formula is a global function of an appropriate type. 
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The Localization Principle. Think about global relations and global functions as 
relations and functions (of appropriate types) on the structure of discourse. 

   The localization principle allows us to speak about the negation of a given global 
relation, about the transitive closure of a given binary global relation, about 
composition of unary global functions, etc. 

Proviso.    In Part 1, 

1. any structure is a finite first-order structure of finite signature, 

2. the universe of any structure is an initial segment of natural numbers, 

3. any class of structures consists of structures of the same signature, and 

4. the domain of any global relation comprises all structures of some signature that 
are permitted in the context, unless the contrary is said explicitly. 

   The proviso allows us to associate a decision problem with each global relation. 

 

Definition 1.3 Let p be an r-ary K-global relation. An instance of the decision 

problem for ρ is a pair 〈S, x〉 where S belongs to K and x is an r-tuple of 
elements of S; the corresponding question is whether ρ(x) holds in S (in other 
words, whether x belongs to ρs). 

   However, we need to agree on a standard way to represent structures as inputs 
for computing devices. To simplify the exposition, we choose to represent struc-
tures by means of several input tapes. Suppose that S is a structure of cardinality n. 
One input tape, called the universe tape, represents the universe {0, 1, . . . , n — 1} 
of S; it is of length n, its end-cells are specially marked but the intermediate cells 
are all blank. (Ignore the case of n = 1.) If R is a basic r-ary relation of S or the 
graph of an (r - l)-ary basic function of S then R is represented by a special tape of 
length nr; for all elements  xo, . . . , xr-1,  the cell number ∑xi • n

i contains 1 if          
R(xr-1, . . . , xq)  holds, and 0 otherwise. 

The Globalization Principle. View relations and functions under discussion as the 
specializations of global relations and global functions to the structure of 
discourse. 

   The globalization principle can be applied only if the context uniquely defines 
appropriate relations or functions on all relevant structures. For example, suppose 
that a discussion involves the transitive closure R of a basic relation of the 
structure of discourse. Then the globalization principle allows us to speak about R 
being polynomial time recognizable. 
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   Fagin proved (20) that existential second-order logic captures nondeterministic 
polynomial time. 

Theorem 1.1  A global relation is definable by an existential second-order 
formula if and only if it is recognizable by a polynomial time bounded nonde- 
terministic Turing machine.                                                                       ■ 

   The proof of Theorem 1.1 may be found in the third section of Börger's 
contribution to this volume (Chapter 2). 

   It is easy to see that every first-order definable global relation is log-space (and 
therefore polynomial time) recognizable. The converse is not true. For example, 
the global relation "The cardinality of the universe is even" is log-space 
recognizable but not first-order definable. As we will see below, some natural 
extensions of first-order logic express exactly log-space (respectively polynomial 
time) recognizable global relations. 

Definition 1.4 Let L be first-order logic or an extension of first-order logic by 
additional logical operators. (A number of such extensions will be defined in 
subsequent sections.) L + < is the extension of L by means of a logical constant  < 
(just as first-order logic with equality is the extension of first-order logic by means 
of a logical constant =). The logical constant  <  is interpreted on each structure S 
as the restriction of the usual order of natural numbers to the universe of S. 

 

SECTION 2.                TRANSITIVE CLOSURES 

This section is devoted to transitive closure logics. We start our treatment of 
different extensions of first-order logic with transitive closure logics because of 
their relative simplicity. The use of two-way multihead automata will allow us to 
simplify the proofs related to capturing complexity classes. 

   The localization principle implicitly introduces the transitive closure of a given 
binary global relation. The transitive closure of a first-order expressible binary 
global relation may be not first-order expressible; see (2, 23, 29). In this con-
nection, Aho and Ullman (2) suggested extending the relational calculus, a 
standard relational query language and a variant of first-order logic, by a powerful 
least fixed point operator. Immerman (45) turned the transitive closure itself into a 
logical operator TC. He defined also a deterministic transitive closure operator 
DTC, and proved that the corresponding extensions FO + TC + < and FO + DTC + 
< of first-order logic capture natural complexity classes. We prove here some of 
Immerman’s  results. 
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Definition 1.5  If R is a relation of an even arity 2r over some universe U then the 
relation {(x,y): tuples x,y belong to Ur, and the concatenation x*y belongs to R} is 
the binary companion BC(R) of R. The transitive closure of a 2r-ary relation 
relation R is the 2r-ary relation TC(R) (over the same universe) whose binary 
companion is the transitive closure of BC(R). With respect to the localization 
principle, the transitive closure of a 2r-ary global relation ρ is the global relation 
TC(ρ) such that the domain of TC(ρ) equals that of ρ and for each structure S in 
the domain of ρ, the specialization of TC(ρ) to S is the transitive closure of ρs. 

   It will be convenient for us in this section to play down the distinction between 
relations of even arity and their binary companions. 

Lemma 1.1 If a 2r-ary global relation ρ is nondeterministically log-space rec-
ognizable (i.e. if the decision problem for ρ is solvable in nondeterministic log-
space) then so is TC(ρ). 

Proof  Let S be a structure in the domain of ρ, R be the specialization of ρ to S, 
and a,b be r-tuples of elements of S. The desired algorithm is: 

   begin  

      x := a; 

      repeat 
      guess y; 
      if (x,y) ε R  then  x := y 

      until x = b; 
      halt with output YES  
   end.                                                                                                                   ■  

   Notice the use of the globalization principle in the exposition of the proof.  

   We define a logic FO + TC. The syntax of FO + TC is the extension of the 
syntax of first-order logic by: 

Transitive Closure Formation Rule. Let r be a positive integer and φ(x,y) be a 
well-formed formula where x and y are r-tuples of individual variables such that 
the 2r variables are distinct. Then TCx,yφ(x,y) is a well-formed predicate, and if s,t 
are r-tuples of well-formed terms then [TCx,yφ(x,y)](s,t) is a well-formed formula. 

   TCx,y binds the 2r individual variables in the new predicate (but the additional 
occurrences of these variables in the tail of a formula [TCx,yφ(x,y)](x,y) are free). 
φ(x,y) may have additional free individual variables. A more explicit 
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notation for the new predicate is TQx,y φ(w,x,y) where w is the list of those 
additional variables. The new formula [TCx,yφ(w,x,y)](s,t) means (on each relevant 
structure) that (s, t) belongs to the transitive closure of the relation Rw = {(x,y): 
φ(w,x,y)}. The global function semantics for first-order logic naturally extends to 
logic FO + TC; again the meaning of a formula with r free individual variables is a 
global r-ary relation. 

   The transitive closure formation rule introduces well-formed predicates in 
addition to well-formed formulas. The only well-formed predicates in first-order 
logic are predicate symbols. The transitive closure formation rule is essentially a 
predicate formation rule. The new predicate is then used to form new formulas. 
But it is possible to deal only with formulas of course. 

Remark  Immerman (45) seems to define directly a new formula TC[φ(x,y)] 
which is a simpler notation for [TCx,yφ(x,y)](x,y). Unfortunately, the simpler 
notation is somewhat deficient. Try to express [TCx,yP(x,y,x)](x,x) or 
[TCx,yP(x,y,x)](fx,x) in the simplified notation. 

   Positive and negative occurrences of a predicate in a formula are defined by 
induction. In particular, every positive (respectively negative) occurrence of a 
predicate in a formula φ remains so in any formula [TC... φ](. . .).  Say that a 
formula φ is positive with respect to TC if every occurrence of every predicate 
TC...ψ  in φ is positive. 

   In Section 1, we spoke about extensions L + < of logics L by means of the built-
in linear order. In particular, we have an extension FO + TC + <  of  FO + TC. 
Viewing 0 and 1 as logical constants yields a further extension   FO + TC + < + 
{0, 1}. 

Theorem 1.2   Let ρ be a global relation. The following are equivalent: 

1. ρ is nondeterministic log-space recognizable, 

2. ρ is definable by an FO + TC + < formula φ which is positive with respect to 
TC. 

3. ρ is definable by a FO + TC + < + {0,1} formula [TCx,y ψ(x,y)](s,t) where s,t are 
sequences of zeros and ones, and ψ is first-order. 

Proof   (3) → (2).    The constants 0 and 1 are definable in FO + <. 

   (2) → (1). Without loss of generality, one may suppose that only first-order 
subformulas can be negated in the defining formula φ: use the usual duality laws 
for first-order logic. Then an easy induction shows that every subformula of the 
defining formula is nondeterministically log-space recognizable. The case of  TC 
is taken care of in Lemma 1.1. 
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   To prove the implication (1) → (3), suppose that ρ is recognizable in non-
deterministic log-space. According to the Appendix, there is a nondeterministic 
two-way multihead automaton that recognizes ρ. Let formula  Next(w,x,y) and 
tuples Initial, Final be as in the Appendix. Then the desired FO + TC + < + {0, 1} 
formula is 

                              [TCx,y Next(w,x,y)](Initial,Final)                                            ■ 

Definition 1.6   The deterministic version of a binary relation R is the relation 
{(x,y): (x,y)εR and there is no z ≠ y with (x,z)εR}. The deterministic version of a 
2r-ary relation R is the 2r-ary relation whose binary companion is the 
deterministic version of BC(R). The deterministic transitive closure DTC(R) of a 
2r-ary relation R is the transitive closure of the deterministic version of R. With 
respect to the localization principle, the deterministic transitive closure of a 2r-ary 
global relation ρ is the global relation DTC(ρ) such that the domain of DTC(ρ) 
equals that of ρ and for each structure S in the domain of ρ, the specialization of 
DTC(ρ) to S is the deterministic transitive closure of ρs. 

Lemma 1.2   If a 2r-ary global relation ρ is log-space recognizable then so is 
DTC(ρ). 

Proof    Let S range over the domain of ρ,  U  be the universe of the   structure   S, 
R = ρs,  and a,b  be r-tuples of elements of U. We need an algorithm which, given 
S and (a,b), will decide whether (a,b) belongs to DTC(R). 

    The deterministic version of R is the graph of some partial function f on Ur. 
Given x in Ur, one can find in log-space whether there is some y with (x,y)εR 
and whether there are different y,z with (x,y)εR and (x,z)εR .This yields a 
log-space algorithm which, given x, computes fx or UNDEFINED. Given a and 
b, compute f ka for k = 1, 2, etc. and halt when b comes along or UNDEFINED 
is returned or k reaches n. If b has come along then return YES, otherwise return 
NO.                                                                                                                 ■ 

   Again, the globalization principle was used to simplify the exposition of the 
proof. 

    The definition of an extension FO + DTC of first-order logic is similar to the 
definition of FO + TC. Just change 'TC" to "DTC," and "transitive closure" to 
"deterministic transitive closure." 

Theorem 1.3    Let ρ be a global relation. The following are equivalent: 

1. ρ is log-space recognizable, 

2. ρ is definable in FO + DTC + <, 
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3. ρ is definable by a FO + DTC + < + {0,1} formula [DTCx,y ψ(x,y)](s,t) where s,t 
are sequences of zeros and ones, and ψ is first-order. 

Proof   Similar to that of Theorem 1.2.                                                      ■ 

Since the deterministic version of a given relation is first-order definable, FO + 
DTC can be seen as a sublogic of FO + TC. 

 

SECTION 3.    LEAST FIXED POINTS 

In this section we define the extension FO + LFP of first-order logic by the least 
fixed point operator (2, 12) and prove Immerman and Vardi's theorem that FO + 
LFP + < captures polynomial time (44, 68). Again, the use of two-way multihead 
automata will allow certain simplification. 

Definition 1.7  Let F be a unary operation on a partially ordered set. If Fx = x then x 

is a fixed point of F. If Fx = x and  �y(Fy = y → x ≤ y) then x is the least fixed 
point LFP(F) of F. If Fx ≤ Fy for all x ≤ y then F is monotone. 

Definition 1.8  A partially ordered set is complete if every subset of it has a least 
upper bound and a greatest lower bound. 

    For example, the set of relations of a fixed arity on a fixed nonempty set is a 
complete partially ordered set with respect to inclusion. The following fact is well-
known. 

Fact  Let D be a finite (or infinite complete) partially ordered set with a least 
element. A monotone unary operation F on D has a least fixed point. 

Proof   Let g0 = min(D) and each g(α +1) = F(gα). (In the case of infinite 
D), let additionally gα = sup{gβ: (β < α} for limit α.) By monotonicity, the 
function g is increasing (though not necessarily strictly increasing). Hence, there 
is α with gα. = g(α + 1); let γ = min{α: gα = g(α + 1)}. Obviously, gγ is a 
fixed point of F. Given a fixed point y of F, prove by induction that each gα ≤ y. 
Hence gγ = LFP(F).                                                                                       ■ 

   The localization principle gives: 

Definition 1.9    Let F be a σ-global function of type 

                         [Power-Set(Universer)] → [Power-Set(Universer)] 

so that each specification of F takes an r-ary relation to an r-ary relation. F is 
monotone if every specialization of F is so. If F is monotone then the least fixed 
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point  LFP(F) of F is the σ-global r-ary relation that assigns to each a-structure S 
the least fixed point of FS. F is polynomial time computable if there is a 
polynomial time algorithm that, given a σ-structure S and an r-ary relation P on S, 
computes FS(P). 

Lemma 1.3   Let F be a monotone σ-global function of type 

                    [Power-Set(Universer)] → [Power-Set(Universer)]. 

If F is polynomial time computable then LFP(F) is polynomial time recognizable. 

Proof   Given a structure S and an r-tuple x of elements of S, compute P0 
= Ø 

pl = FS(P0), P2 = FS(P1), etc. until you come across Pm + l = Pm. Then check 
whether x belongs to Pm. Since m ≤  |S|r, this algorithm works in polynomial 
time.                                                                                                                    ■ 

   The syntax of logic FO + LFP is the result of augmenting the syntax of first-
order logic by the following formation rule. (If all predicate symbols of first-order 
logic are treated as predicate constants then first-order logic should be augmented 
by predicate variables first.) 

Least Fixed Point Formation Rule.  Let r be a positive integer, x be an r-tuple     
x1, . . . , xr of individual variables, P be an r-ary predicate variable, and φ(P, x) be  
a well-formed formula. If φ(P,x) is positive in P (i.e. all free occurrences of P in 
φ(P,x) are positive) then LFPP; x φ(P,x) is a well-formed predicate and, for every r-
tuple t of well-formed terms, [LFPP; x φ(P,x)](t) is a well-formed formula. 

   LFPP; x binds the predicate variable P and the individual variables x1, . . . , xr (but 
of course additional occurrences of these individual variables in the tails of 
formulas [LFPP; x φ(P,x)](t) are free). If Q is a predicate variable different from P 
then every positive (respectively, negative) occurrence of Q in φ(P,x) remains 
positive (respectively, negative) in the new predicate and the new formulas. 

Remark   A simplified notation LFPPφ(P,x) for [LFPP;xφ(P,x)](x) is deficient: just 
try to express [LFPP; xφ(P,x)](t) in the simplified notation. 

   To be on the safe side, let us emphasize that logic FO + LFP allows interleaving 
LFP with propositional connectives (including negation) and quantifiers; in 
particular, one can negate an LFP formula then use the LFP formation rule again, 
etc. 
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   The formula φ(P,x) may have additional free  individual variables;  let w be the 
list of the additional individual variables.  The meaning  of  the  predicate           
LFPP; xφ(P,w,x) is the least fixed point of the operator Fw(P) = {x: φ(P,w,x)} on 
the set of r-ary relations ordered by inclusion. Since the formula φ(P,w,x) is 
positive in P, the operator Fw is monotone and therefore has a least fixed point. 
The global function semantics for first-order logic naturally extends to FO + LFP. 

Theorem 1.4   Let ρ be a global relation. The following are equivalent: 

1. ρ is polynomial time recognizable, 

2. ρ is definable in logic FO + LFP + <, 

3. ρ is definable by a FO + LFP + < + {0,1} formula [LFPP;xψ(P,x)](t) where ψ is 
first-order and t a sequence of zeros and ones. 

Proof   The implications (3) → (2) and (2) → (1) are obvious. To prove the im-
plication (1) → (3), suppose that ρ is polynomial time recognizable. According to 
the Appendix, there is an alternating two-way multihead finite automaton that 
recognizes ρ. Let the formula Next(w,x,y) and the tuples Initial, Final be as in the 
Appendix. It is easy to write down first-order formulas Existential(x) and 
Universal (x) asserting that the internal state of the automaton in the given con-
figuration x is respectively existential or universal.  Let 

    Accepted(w,_) = LFPP;x[x = Final,     or 

                                  Universal (x) & �y(Next(w,x,y) →   P(y)),     or 

                                  Existential(x) & �yNext(w,x,y) & P(y))]. 

   The desired FO + LFP formula is Accepted(w, Initial).                             ■ 

 

SECTION 4.       BRANCHING QUANTIFIERS 

We turn now to an extension of first-order logic by branching (or Henkin) 
quantifiers whose introduction was motivated by considerations quite distant from 
computer science (42). 

Let us start with an example. The expression 

 

 

 

means that for all u and x there are v and y such that v depends only on u, y 
depends only on x, and φ(u,,v, x,y) holds.  In other words, there are functions V(u) 
and Y(x) such that φ(u,V(u),x,Y(x)) holds. 
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   In general, a branching quantifier is a partially ordered set of expressions �x and 

�y; an existentially quantified variable y depends upon the universally quantified 

variables x such that �x precedes �y in the partial order (69). 

Theorem 1.5    For any global relation ρ the following are equivalent: 

1. ρ is NP, 

2. ρ is expressible by an existential second-order formula, 

3. ρ is expressible by a formula Qφ where Q is a branching quantifier and φ is a 
first-order formula. 

Proof   The equivalence (1) ↔  (2) is Theorem 1.1 in §1, the implication (3) →  
(2) is obvious, the implication (2) →  (3) is proved in (69).                              ■ 

   

   In the rest of the section we describe a few results from (8). The only novelty is 
the direct proof of Theorem 1.8 below. A branching quantifier Q will be called 
mighty if there is a first-order formula φ such that the global relation Qφ is NP-
complete under polynomial time reductions. 

Theorem 1.6   The quantifier (1.1) is mighty. 

Proof   The idea is to express 3-colorability of a graph with individual constants 0, 
1, and 2. The desired φ is the conjunction of the formulas: 

                               u = x  →  v = y, 

                               v = 0  or  v = 1  or  v = 2, 

                               Edge(u, x) →  v ≠  y.                                                                ■ 

    Note that, in the proof of Theorem 1.6, the existentially quantified variables 
range, in effect, over {0,1,2}. Let α, β, γ  range over {0,1}, and  µ range over 
{0,1,2}. 

 

Theorem 1.7   The quantifiers  

 

                         ■ 

 



www.manaraa.com

 

16                                                                                  Logic and the Challenge of Computer Science 

   In the rest of this section, x and y are tuples of individual variables. The 
branching quantifier 

                                 

will be called the narrow Henkin quantifiers and denoted NH(x,α; y,β). Without 
loss of generality, x and y always have the same length: just pad the shorter tuple. 
Let ENH(x,α; y,β) be the equality bound version of NH(x,α; y,β): 

                      NH(x,α; y,β)[(x = y →  α = β)  &  φ(x, y, α, β)]. 

ENH(x,α; y,β) asserts (in each relevant structure) the existence of a function f from 
the universe to {0, 1} such that for all x and y, φ(x,y,f(x),f(y)) holds. In the rest of 
this section, we assume that α and β range over the truth-values rather than over 
{0,1}. Then ENH(x,α; y,β)φ(x, y, α, β) is equivalent to the second-order formula 

                          �R�xyφ(x,y,R(x),R(y)). 

An arbitrary NH(x,α; y,β)φ(x, y, α, β) is equivalent to 

                  ENH(xu,α; yv,β)[(u = 0  &  v = 1) →  φ(x, y, α, β)]. 

    Let FO + NH be the extension of first-order logic by narrow Henkin quantifiers. 
Positive and negative occurrences of a subformula ψ in a formula φ are defined by 
the obvious induction on φ; in particular, any positive (respectively negative) 
occurrence of ψ in φ(u, v, γ, δ) remains so in NH(x,α; y,β)φ(x, y, α, β).  We will 
say that a formula φ is positive with respect to NH if every occurrence of every 
subformula of the form NH(x,α; y,β)ψ(x, y, α, β) in φ is positive. Abbreviate 
"nondeterministic log-space" as "Nlog-space." 

Theorem 1.8   For a global relation ρ the following are equivalent: 

1. ρ is co-Nlog-space recognizable, 

2. ρ is expressible by an FO + NH + < formula which is positive with respect to 
NH, 

3. ρ is expressible by an FO + NH + < formula ENH(x,α; y,β)φ(x, y, α, β)  with a 
first-order φ. 

Proof   (1) →  (3).  Suppose that ρ is co-Nlog-space recognizable, and let ρ' be the 
complement of ρ (so that on each relevant structure, the specification of ρ' is the 
complement of the specification of ρ). According to the Appendix, there is a two-
way multihead nondeterministic finite automaton that recognizes ρ '. Let formula 
Next(w,x,y) and tuples Initial and Final be as in the Appendix. The desired formula 
expresses the nonacceptance by the automaton: 
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                  ENH(x,α; y,β)[(x = Initial →  α = 1) & 

                                          ((α = 1 &  Next(w,x,y))  →  β = 1) & 

                                           (y =  Final →  β = 0)].          

   The implication (3) → (2) is trivial. 

   (2) → (l).  Without loss of generality, we may suppose that only first-order 
subformulas of the defining formula can be negated: use the usual duality laws of 
first-order logic. By induction, we will prove that every subformula of the defining 
formula is co-Nlog-space recognizable. It suffices to prove that if φ(x, y, α, β) is 
co-Nlog-space then so is ψ = ENH(x,α; y,β)φ(x, y, α, β). Thus, suppose that M' is a 
log-space bounded nondeterministic Turing machine that recognizes the negation 
φ'(x, y, α, β) of φ(x, y, α, β).   We have 

      ψ ↔ �R �x�y (x,y,Rx,Ry) ↔ �R �x�y not φ'(x,y,Rx,Ry) ↔ 

       �R Πx,y  not ∑φ'(x, y, α, β)  (Rx = α) & Ry = β) ↔ 

       �R Πφ'(x, y, α, β)(Rx ≠ α) & Ry ≠ β).     

   Here Πx,y  means (in each relevant structure) the conjunction over all values of x 
and y. For given values of x and y, ∑φ'(x, y, α, β) means the disjunction over the values 
of α and β satisfying φ'(x,y,Rx,Ry).  And Πφ'(x, y, α, β) means the conjunction over all 
values of x, y, α and β satisfying φ'(x,y,Rx,Ry).  For every value a of x, view Ra as 
a propositional variable. Then ψ asserts satisfiability of the propositional formula 
Πφ'(x, y, α, β)(Rx ≠ α) or Ry ≠ β). Recall that a literal is a propositional variable or the 
negation of such. 

Fact (49) A conjunction C of binary disjunctions of literals is unsatisfiable if and 
only if there are a propositional variable p and a sequence l1 → l2 →   . . . → lm → 
l1 of literals such that each implication li → li+l  as well as the implication lm → l1 
is equivalent to a conjunct of C, and both p and the negation of p appear in the 
sequence. 

Now we are ready to describe a log-space bounded nondeterministic Turing 
machine N that recognizes the negation of ψ. Let M be a log-space bounded 
nondeterministic Turing machine that recognizes φ'. Step-by-step N guesses a 
sequence l1 → l2 →   . . . → lm →  l1 of literals that witnesses the unsatisfiability of 
C = Πφ'(x, y, α, β)(Rx ≠ α) or Ry ≠ β).  To check that an implication li → li+l   (where 
i +1 = 1  if  i = m)  is  equivalent  to  a conjunct of  C, N presents li,   in the form 
Ra = α, presents li+l in the form Rb ≠ β, and uses M to check φ'(a, b, α, β).           ■ 

 

Branching Quantifiers                           
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SECTION 5. FUNCTION LOGICS 

First-order logic is essentially a logic of relations. It has one function construct: 
the composition, and a number of relation constructs: boolean connectives and the 
two quantifiers. It allows constructing formulas from terms but not the other way 
round. In Sections 2-4 we studied extensions of first-order logic by means of 
additional relation constructs. In this section, we turn to logic of functions in the 
case when only finite structures are permitted. 

   Consider the classical language of functions primitive recursive relative some 
given functions (47). Usually, primitive recursive terms are interpreted over the set 
of natural numbers. But here we interpret primitive recursive terms as functions 
over a nonempty finite initial segment of natural numbers. View the individual 
constant 0 as a name of the number zero, view the sign of successor function as a 
name of the partial successor function on the universe of discourse, and so on. 
Then every primitive recursive term means a global function. We take the liberty 
of extending the syntax by a new individual constant End for the last element of 
the universe of discourse. It turns out then that a global function is primitive 
recursive if and only if it is log-space computable (28). Similarly, a global function 
is recursive if and only if it is polynomial time computable (28, 57). This section 
recapitulates some of the paper (28). It has also a couple of new elements: a 
remark that primitive recursion can be replaced by a WHILE construct, and a 
simpler universal recursive schema. 

   We start with primitive recursive global functions. The language of primitive 
recursive functions will be reformulated in a form that is convenient for our 
purposes. In the same time we will extend the language by the individual constant 
End. 

   According to the proviso of Section 1, the universe of every structure is an initial 
segment of natural numbers. In this section, we have three additional provisos: 

1. Every structure contains at least two elements. (Alternatively, one may assume 
existence of an extra universe Bool = {False, True}.) 

2. Individual constants 0, End and a unary function symbol Successor are logical 
constants (as equality is a logical constant in first-order logic with equality). In 
every structure, 0 denotes the number zero, End denotes the maximal number in 
the universe, and Successor denotes the partial function λx(x +1). The three logical 
constants will not be counted as members of any signature. 

3. A certain (possibly empty) signature σ is fixed. Every structure is a σ-structure. 
Every global function is σ-global. 

In this section, a function (resp. global function) means a partial function (resp. 
partial global function) of type Universep -» Universeq for some none- 
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gative integer p (the arity) and some positive integer q (the coarity). A function of 
coarity q > 1 can be seen as a sequence of q functions of coarity 1, but it will be 
convenient to deal directly with functions of higher coarity. If t1, . . . , tk are tuples 
of elements then (t1, . . . , tk) will denote the concatenation of tuples t1, . . . , tk 
rather than a k-tuple of tuples. 

With respect to the localization principle, we view global functions as functions on 
the structure S of discourse. Let U = {0, . . . , n — 1} be the universe of S.   The 
value of  a  nonempty  tuple  (xk-1, . . . , x1, x 0)  of elements of  U is the number 
∑i<k  xi•n

i.   If elements of U are seen as digits over the radix n then any nonempty 
tuple of elements of U is a positional notation over the radix n for its value. 

Definition 1.10   The initial functions are: 

1. For every nonnegative p, the constant p-ary functions with values 0 or End. 

2. For every positive p, the p-ary p-coary successor function. Given a p-tuple of 
value V < np-1, the function produces the p-tuple of value V + 1; it is not defined 
on the p-tuple of value np - 1. We will denote the successor of a tuple t as t + 1. 

3. For all p ≥ q ≥ 1 and every sequence 1 ≤ i1 ≤  i 2 ≤  . . . ≤  iq ≤  ip, the 
corresponding p-ary q-coary projection function. For example, if p = 4, q = 2 and 
i1 = 2, i2 - 4 then the projection of (0,1,2,3) is (1,3). 

4. The basic σ-functions, and the characteristic functions of basic σ-predicates. 
(Individual constants are functions of arity 0 and coarity 1.) 

   The composition g(h1(x), . . . , hk(x)) of functions g and h1, . . . , hk is defined in 
the obvious way. It is required that arity(h1) = . . . = arity(hk) and arity(g) = 
coarity(h1) + . . . + coarity(hk). 

   As usual, the primitive recursion schema is the schema 

                        f(x, Zero) = g(x),  f(x,t+1) = h(x,t, f(x, t)) (1.2) 

which defines a new function f by means of given functions g and h of the same 
coarity. Here Zero is the tuple of zeros of the appropriate length. 

Definition 1.11   A global function is primitive recursive if it belongs to the closure 
of initial global functions under compositions and primitive recursions. A global 
relation is primitive recursive if its characteristic function is so. 

Example  Let us check that if a 2-coary function f(x) and a 3-coary function g(x) 
are primitive recursive then the 5-coary function h(x) = (f(x), g(x)) is primitive 
recursive. The 5-ary 5-coary identity function I(y) = y is primitive recursive 
because it is an initial projection function. But h(x) = I(f(x), g(x)). 
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Theorem 1.9  A global function f is primitive recursive if and only if it is log-space 
computable. 

   We skip the proof of Theorem 1.9, see (28). 

   The language of primitive recursive functions can be viewed as a programming 
language such that exactly log-space computable global functions can be pro-
grammed. Programming languages of that sort may be useful in applications 
where the complexity of computations is bounded a priori. In this connection, let 
us mention that the primitive recursion schema can be replaced by more familiar 
programming constructs. Consider, for example, the construct 

                   y := e0;  FOR s := el  TO e2 DO y := e3 (1.3) 

where e0, e1, e2, e3 are expressions (terms) and e0, e1, e2 contain neither s nor y. If 
the expressions ei define primitive recursive global functions then (1.3) defines a 
primitive recursive global function y = f(. . .).   The primitive recursion schema 
(1.2) is expressible by means of (1.3): 

          y : = g(x);  FOR s : = Zero TO  t - 1  DO  y: = h(x, s, y)].  

   Another possible replacement for (1.2) is the construct 

                              y := e0;  WHILE  elRe2 DO y := e3 (1.4) 

where e0, e1, e2, e3 are expressions, and e0, e1, e2 do not contain  y, and R is a 
relation =, < or ≤ .  (It would be desirable of course to introduce boolean 
expressions and to allow an arbitrary boolean expression b instead of elRe2.)   If 
the expressions ei define primitive recursive global functions then (1.4) defines a 
primitive recursive global function y = f(. . .). (1.2) is expressible by means of 
(1.4) and a projection: 

            (s, y) := (Zero, g(x));  WHILE s < t DO  (s, y) := (s + l, h(x,s,y)). 

   Consider now the classical Herbrand-Gödel-Kleene equation language of re-
cursive functions (47) extended by the individual constant End. The recursive 
definitions are naturally adaptable to global functions; it turns out that a global 
function is recursive iff it is polynomial time computable. Moreover, recursive 
functions form the closure of primitive recursive functions under a single ad-
ditional recursion schema. Two schemas are specified for this purpose in (28). 
Here is a simpler recursion schema for the same purpose: 

                              f(x, Zero) = gx,  f(x,t+ l) = h(x,f(αx,t), f(βx,t)) (1.5) 
 

which defines a new function f by means of given functions g, h, α and β. 

Theorem 1.10   A global function is polynomial time computable if and only if it 
belongs to the closure of initial primitive recursive global functions by means of 
composition and recursion schemas (1.2), (1.5). 
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Proof   The "if" implication is clear. To prove the "only if" implication, let 
RECFUN be the closure of initial primitive recursive global functions by means of 
composition and recursion schemas (1.2), (1.5), and let RECREL be the class of 
global relations with characteristic functions in RECFUN. The localization 
principle allows us to speak about the graph of a global function. It suffices to 
prove that an arbitrary polynomial time recognizable global relation ρ belongs to 
RECREL because a polynomial time computable global function can be recovered 
from its graph by primitive recursive means. According to the Appendix, there is 
an alternating two-way multihead automaton that recognizes p; it accepts a 
structure S with a tuple w of an appropriate length if and only if ρ(w) holds in S. 
Let tuples Initial and Final be as in the Appendix. 

   Without loss of generality, every configuration of the automaton has at most two 
next configurations. There are primitive recursive functions α and β such that if y 
codes a configuration then α(w, y) and β(w, y) code the next configurations; if 
there is only one next configuration then α(x, y) = β(w, y). Without loss of 
generality, every internal state of A is either existential or universal; the 
deterministic states (with only one next configuration) can be counted either way. 
We say that a configuration is existential (respectively universal) if the 
corresponding internal state is so. There is a primitive recursive function E such 
that if y codes an existential  (respectively universal) configuration   then Ey 
equals 0 (respectively 1).   Schema (1.5)  allows  us to define an auxiliary  function 
Accept(w, y, t): 

   Accept(w, y, Zero) = If y = Final then 1 else 0, 

   Accept(w, y, t+l)  = If Ey = 0 then max{Accept(α(w, y), t), 

                                   Accept(β(w, y), t} else min{Accept(α(w, y), t), 

                                   Accept(β(w, y), t}. 

   Notice that ρ(w) ↔ � t [Accept(w,Initial, t) = 1]. 

   Here t is a tuple (t1, . . . , tr) of a fixed length r, and �t means � t1. . . � tr.. 
But RECREL is closed under the existential quantification over the elements. 
Hence ρ is in RECREL.                                                                                       ■ 

 

SECTION 6.    INDUCTIVE FIXED POINTS 

The LFP formation rule of Section 3 had one ad hoc feature. To ensure that the 
operator F(P) = {x: φ(P, x)} is monotone, the formula φ(P, x) was supposed to be 
positive in P.   The positivity of φ is sufficient but not necessary for the 
monotonicity of F.   Unfortunately, replacing  the positivity condition by the 
monotonicity condition results in an extension FO + LFP' of first-order logic that 
we would not like to call a logic: the set of FO + LFP' formulas is undecidable 
(29). Fortunately, there is a better fixed-point extension of first-order logic, 
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called the inductive fixed-point extension FO + IFP, which is even more liberal 
than FO + LFP'. It was introduced in (29) as a development of an idea of Livchak 
(52). This section recapitulates the papers (37) and (38) where the inductive fixed-
point logic was studied. 

Definition 1.12   Let F be a unary operation on a (finite) complete partially ordered 
set D.  Let g0 = min(D) and each g(i + 1) = F(gi). F is inductive if gi ≤  g(i+ 1) for 
every i. It is easy to see that if F is inductive then it has a unique fixed point of the 
form gi; this fixed point will be called the inductive fixed point IFP(F) of F. F is 
inflationary if X ≤  F(X) for every XεD. 

Lemma 1.4   Let F be a unary operation on a complete partially ordered set. 

(a) If F is inflationary then it is inductive. 

(b) The operation F'(X) = sup{X, F(X)} is inflationary; if F is inductive then 
IFP(F') = IFP(F). 

(c) If F is monotone then it is inductive and LFP(F) = IFP(F). 

Proof   is clear.                                                                                                      ■ 

Examples   Consider the power set of  U = {0,1,2} ordered by inclusion. 

1. Define FX = XU {the cardinality of X} if X ≠ U, and FU = U. Then F is 
inflationary but not monotone. Moreover, F does not have a least fixed point: both 
{1} and {0, 2} are fixed points of f but FØ ≠ Ø. 

2. Define G = F except G{1} = Ø. Then G is inductive but neither inflationary nor 
monotone. 

3. The constant operations HX = {0} is monotone but not inflationary. 

   The syntax of logic FO + IFP is the extension of the syntax of first-order logic 
by: 

The Inductive Fixed Point Formation Rule.     Let  r be a positive integer, x be an 
r-tuple x1, . . . , xr of individual variables, P be an r-ary predicate variable, φ(P, x) 
be a well-formed formula, and φ'(P,x) = [P(x) or φ(P,x)].  Then IFPP;xφ'(P,x) is a 
well-formed predicate and [IFPP;xφ'(P,x)](x) is a well-formed formula. 

The meaning of the predicate IFPP;xφ'(P,x)  is the inductive fixed point of the 
inflationary operator F(P) = {x: φ'(P,x) }. The global function semantics for first-
order logic naturally extends to FO + IFP. 

The statement (c) of Lemma 1.4 implies that FO + IFP is at least as expressive as 
logic FO + LFP' mentioned above. 
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Theorem 1.11    The logics FO + LFP and FO + IFP have the same expressive 
power. 

Corollary   A global relation is expressible in FO + IFP + < if and only if it is 
polynomial time recognizable. 

Proof    Use Theorem 1.4 of Section 3.                                                          ■ 

   Theorem 1.11 is a consequence of a stronger theorem. Let r be an arbitrary 
positive integer, and let Γ range over monotone global functions of the empty 
signature and of type 

     Power-set(Universer) × Power-set(Universer) × Universer →   Bool. 

The monotonicity of  Γ means that (on every finite structure) Γ(P1,P2, x)  implies  

Γ(P3,P4, x) if P1 � P3 and P2 � P4. We are interested in the inflationary operator 
G(P) = {x: P(x) or Γ(P, not P, x)}. 

   Define an extension FO + Γ of first-order logic by means of the following 
formation rule: if x is an r-tuple of individual variables and φ(x), ψ(x) are well-
formed formulas then so is Γ({x: φ(x)}, {x: ψ(x)}, x). The global function se-
mantics for the extended logic is clear. Treat Γ as a positive operator: every 
positive (respectively negative) occurrence of a predicate symbol in φ(x)or ψ(x) 
remains so in Γ({x: φ(x)}, {x: ψ(x)}, x). If an FO + Γ formula ψ(Q, y) is positive in 

a predicate symbol Q then the operator ψ̑(Q) = {y: ψ(Q, y)} is monotone; if 

ψ̑ is repetitive (i.e. , if the length of the sequence y of individual variables equals 
the arity of Q) then it has a least fixed point. 

   We say that a relation A is a diagonal of a relation B if A is obtained from B by 
identifying some arguments.   For example, if  B  is  given  by  some  formula  
β(v1, v2, v3, v4) and  A is given by the formula α(v1, v2) = β(v1, v2, v1, v2) then A is a 
diagonal of B. 

Theorem 1.12  There is an FO + Γ formula ψ(Q, y) such that ψ is positive in Q, the 

operator ψ̑ (Q) = {y: ψ(Q, y)} is repetitive, and the inductive fixed point of the 
operator G(P) = {x: P(x) or Γ(P, not P, x)} is a diagonal of the least fixed point of 

ψ̑. 

   To deduce Theorem 1.11 from Theorem 1.12, prove by induction on FO + IFP 
formula φ that φ is equivalent to (i.e., defines the same global relation as) some FO 
+ LFP formula. The only nontrivial case is when φ = [IFPP; x(P(x) or Φ(P(x))](x). 
Let Γ(P,P', x) be the result of replacing all negative occurrences of P in Φ by a 
new predicate symbol P'. Then Γ is monotone in both relational variables, and 
Φ(P(x) is equivalent to Γ(P, not P, x). Now use Theorem 1.12. 
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Theorem 1.13  For every FO + IFP definable global relation ρ there is a first-order 

formula φ(P, x) such that the operator φ̑(P) = {x: P(x) or φ(P, x)} is repetitive and 

(a) if the arity of ρ is positive then ρ is a diagonal of IFP(φ̑), 

(b) if ρ is 0-ary then the unary global relation ρ' such that �v(ρ'(v) ↔ ρ) is a 

diagonal of IFP(φ̑). 

   Theorems 1.12 and 1.13 imply the analog of Theorem 1.13 for FO + LFP 
announced in (44). 

Jiazhen Cai, a student of Bob Paige in New York University, questioned the proof 
of Theorem 1.13 (more exactly, the proof of Lemma 2 in §4 of (38). The following 
claim removes the difficulty in the proof and is interesting all by itself. 

Claim   Let φ(P, x, y) = [P(x) or φ0(P, x, y)] be an FO + IFP formula where x and y 
are tuples of individual variables such that the length of  x equals the arity of P. 
Suppose that y-variables do not have bound occurrences in φ. Let Q be a new 
predicate variable whose arity allows to form a formula Q(x,y), and let ψ(Q, x, y) is 
the result of replacing each P(u) by Q(u,y) in φ(P, x, y). Then 

            [IFPP;x φ(P, x, y)](x) ↔  [IFPQ; x,y ψ(Q, x, y)](x,y)  

Proof   For each y, let 

             P0(y) = Ø, P1(y) = {x: φ(P0, x, y)},  P2(y) = { x: φ(P1, x, y)}, . . . 

be the approximations to IFPP;x φ(P, x, y), and let 
             Q0 = Ø,  Q1 = {(x,y): φ(Q0, x, y)},  Q2 = {(x,y): φ(Q1, x, y)}, . . .   

be the approximations to IFPQ; x φ(Q, x, y). (Here (x,y)  is the concatenation of 
tuples  rather  than a pair of tuples.)   It  suffices to check  that each Pi(y) = {x: 
Qi(x, y)}.  The case i = 0 is trivial.  Further, 

     x belongs to Pi+1(y) ↔  φ(Pi(y), x, y) ↔  (by the induction hypothesis) 
φ({x: Qi(x,y)}, x,y) ↔ ψ(Qi, x, y) ↔  (x,y) belongs to Qi+1.                                     ■ 

   To formulate a similar claim for FO + LFP,  replace  the  assumption  that     
φ(P, x, y) = [P(x) or φ0(P, x, y)] by the assumption that φ(P, x, y) is positive in P. 

Remark   Theorem 1.13 can be strengthened further: φ can be taken to be a 
boolean combination of existential first-order formulas (11). 

Remark   The well-known zero-one law for first-order logic extends to inductive 
fixed-point logic (10). 
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SECTION 7. INVARIANT GLOBAL RELATIONS 

We saw above that in the case of structures with built-in linear order there are nice 
logics which capture polynomial time. In this section we discuss the problem of 
capturing polynomial time in the general case. The problem was posed (in slightly 
different terms) in (12b) and discussed in (29). 

Definition 1.13  An r-ary global relation ρ of some signature σ is abstract if for 
every isomorphism  f  from a σ-structure S onto a σ-structure T and all elements    
xl , . . . , xr     of  S, 

                                        ρS(xl , . . . , xr) ↔ ρT(fxl , . . . ,fxr). 

   A logic capturing polynomial time is supposed to express exactly polynomial 
time computable abstract global relations.1 

Remark   Some polynomial time complete abstract properties are expressible in 
FO + LFP (45). But the abstract property that the universe is of even cardinality is 
not expressible in FO + LFP (12b).  In virtue of Theorem 1.11 in Section 6, that 
abstract property is not expressible in FO + IFP. 

   We do not believe that there is a reasonable logic that captures polynomial time. 
To express our feeling in the form of a formal conjecture, we adapt the notion of 
logical systems (18) to our purpose. 

Definition 1.14  A logic L is a pair (SEN, SAT) satisfying the following re-
quirements. SEN is a function that associates with every finite signature σ a 
recursive set SEN(σ) whose elements are called L-sentences of signature σ.  SAT 
is a function that associates with every finite signature σ a recursive subset SAT(σ) 
of {(S, φ):  S  is a finite  first-order σ-structure and φ is an L-sentence of signature 
σ} such that if structures S and S' are isomorphic and (S, φ) belongs to SAT(σ) 
then (S', φ) belongs to SAT(σ) as well. If (S, φ) belongs to some SAT(σ), we say 
that S satisfies φ. 

Definition 1.15  If L is a logic and φ is an L-sentence of some signature σ, then 
MOD(φ) be the set of σ-structures satisfying φ. 

Definition 1.16   A logic L captures polynomial time if: 

1. For every L-sentence φ, the class MOD(φ) is polynomial time recognizable; 
moreover, for every σ there is a Turing machine M that, given an L-sentence 

_______________ 
1A logic capturing partial (not necessarily defined on all structures of the appropriate signature) 
recursive abstract global relations was designed in (12a). 
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φ of signature σ, produces a polynomial time bounded Turing machine M(φ) that 
recognizes MOD(φ). 

2. For every polynomial time recognizable class K of structures of some signature 
σ, if K is closed under isomorphisms then there is an L-sentence φ of signature σ 
such that MOD(φ) = K. 

Remark  In this section, a polynomial time bounded Turing machine can be 
viewed as a pair (T,p) where T is a Turing machine and p is a polynomial with 
integer coefficients; (T,p)  accepts an input w of T if T accepts w within p(|w|) 
steps. 

Conjecture   There is no logic that captures polynomial time. 

   Our adaptation of the notion of logics in (18) includes some alterations. In 
particular, we consider only finite signatures and finite structures, and require the 
recursivity of sets SEN(σ) and SAT(σ). Let Rl and R2 be the two recursivity 
requirements, respectively. 

Claim 1  Waiving the recursivity requirements in Definition 1.14 falsifies the 
conjecture. 

Proof   Call a Turing machine M σ-appropriate if (a) it is able to take σ-structures 
as inputs, and (b) the class {S: S is a σ-structure and M accepts S} is closed 
under isomorphisms.  Define L = (SEN, SAT) where each SEN(σ) consists of 
all σ-appropriate Turing machines, and each SAT(σ) consists of all pairs (S, M) 
such that S is a σ-structure and M is a σ-appropriate Turing machine that accepts 
S. It is easy to see that L is a logic in the liberalized sense and L captures 
polynomial time.                                                                                                      ■ 

   We could omit the second recursivity requirement R2 in Definition 1.14 because 
it follows from the condition of capturing polynomial time, but we consider it 
necessary in general and it complements Rl in the following sense (7).  Suppose 
that L = (SEN, SAT) satisfies the requirements of Definition 1.14 except for Rl 
and R2,  and suppose that the sets SEN(σ) are countable.  Fix one-to-one mappings 
fσ from SEN(σ) onto the set of natural numbers and rename every σ-sentence φ as 
the number fσ(φ). The resulting system is similar to L and satisfies Rl. 

   The definition of logics may be justifiably tightened in many ways. One may 
require that every embedding  f: σ → σ', taking any predicate (respectively func-
tion) symbol to a predicate (respectively function) symbol of the same or greater 
arity, gives rise to a recursive embedding of SEN(σ) to SEN(σ '); that the functions 
SEN and SAT themselves are recursive (when signatures are presented by 
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codes if necessary); that the signature of a sentence is computable from the 
sentence; that all recursivity conditions are replaced by corresponding polynomial 
time conditions; etc. Similarly, the notion of capturing polynomial time can be 
justifiably tightened in many ways. For example, one may require that the 
existence of a polynomial time bounded Turing machines M that, given (the code 
of) an arbitrary sentence φ, produces a Turing machine recognizing φ. We have 
chosen our definitions taking into account the negative character of the conjecture. 
Notice however the necessity of the requirement of the existence of machines M in 
clause (a) of Definition 1.16. 

Claim 2   Waiving the requirement of the existence of machines M in Definition 
1.16 falsifies the conjecture. 

Proof  (7)   Let SEN(σ) comprise polynomial time bounded Turing machines 
able to take σ-structures as inputs. Call such a machine M symmetric with respect 
to n if for every pair (S1, S2) of isomorphic σ-structures of cardinality at most 
n, M accepts S1 if and only if it accepts S2. Given a σ-structure S of cardinality 
n and a machine M in SEN(σ), put (S, M) into SAT(σ) if M is symmetric with 
respect to n and M accepts S. Notice that each MOD(M) is closed under 
isomorphisms.  The pair (SEN, SAT) is a logic capturing polynomial time in the 
liberalized sense.                                                                                                      ■ 

Remark  The conjecture is closely related to an open question of Chandra and 
Harel [(12b) Section 5]. They ask (in somewhat different words) whether there is a 
recursive set T of polynomial time bounded Turing machines such that for every σ 
and every polynomial time recognizable class K of σ-structures, K is closed under 
isomorphisms if and only if it is the collection of structures accepted by some 
machine in T. Also, see the paper (5) of Arvind and Biswas in connection with the 
conjecture. 

   The conjecture can be slightly simplified by restricting the attention to graphs. 

Definition 1.17   A graph logic L is a pair (SEN, SAT) satisfying the following 
requirements. SEN is a recursive set whose elements are called L-sentences.  SAT 
is a recursive subset of {(S, φ): S is a finite graph and φ is an L-sentence} such that 
if graphs S and S' are isomorphic and (S, φ) belongs to SAT then (S', φ) belongs to 
SAT as well.  If (S, φ) belongs to some SAT, we say that S satisfies φ. 

Definition 1.18  If  L is a graph logic and φ is an L-sentence, then MOD(φ) is the set 
of σ-structures satisfying φ. 

 



www.manaraa.com

28                                                                      Logic and the Challenge of Computer Science 

Definition 1.19   A graph logic L captures polynomial time if: 

1. For every L-sentence φ, the class MOD(φ) is polynomial time recognizable; 
moreover, there is a Turing machine M that, given an L-sentence φ, produces a 
polynomial time bounded Turing machine M(φ) that recognizes MOD(φ). 

2. For every polynomial time recognizable class K of graphs, if K is closed under 
isomorphisms then there is an L-sentence φ  with MOD(φ) = K. 

Theorem 1.14   The following statements are equivalent. 

1. There is a logic that captures polynomial time. 

2. There is a graph logic that captures polynomial time. 

Proof   The implication (1) → (2) is obvious. To prove the other implication, we 
use the well-known fact that an arbitrary structure S can be efficiently represented 
by a graph G(S) in such a way that two structures S1 and S2 of the same signature 
are isomorphic if and only if the graphs G(S1) and G(S2) are isomorphic. 
Moreover, there is a polynomial time Turing machine that, given the standard 
encoding of an arbitrary structure S, produces the desired graph G(S).  If a graph 
logic L = (SEN, SAT) captures polynomial time, define L' = (SEN', SAT') where 
for each σ, SEN'(σ) - SEN and SAT'(σ) = {(S, φ): S is a  σ-structure and G(S) 
satisfies φ}. Obviously, L' captures polynomial time.                                              ■ 

   Let us notice that both the special case, when the presence of linear order is 
assumed, and the general case, when the presence of linear order is not assumed, 
are important. As an input for a computing device, a structure should be rep-
resented in some way. A representation itself can be viewed as a structure, and in 
that richer structure a certain ordering of elements is usually definable. On the 
other hand, one is often interested in properties of structures that are independent 
of representation; let us call such properties invariant. To simplify somewhat the 
situation, let us view ordered versions of a given structure S as representations of 
S. 

   One way to ensure the invariance of a property of structures is to express the 
property in a logic that does not distinguish between different representations. For 
example, FO + LFP sentences express only invariant properties. There is another 
approach which is a priori more promising: allow linear order and concentrate on 
those properties that do not depend on order. In the rest of this section, 
interpretations of the binary predicate symbol  <  are restricted to linear orders.  If 
the signature of a structure S contains  <  then S will be called ordered, otherwise 
it will be called unordered.  If σ is a signature without  <, S is a structure of 

signature  σ �{<} and S0 is the reduct of S to σ, we will say that S0 is the unordered 
version of S, and S is an ordered version of S0, and any ordered version of S0  is a 
reordering of S. 
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Definition 1.20  An r-ary global relation ρ of some signature σ ��{<} is invariant on 

a structure S of signature σ � {<} if for every reordering T of S, ρS(x) ↔ ρT(x).  
The global relation ρ is invariant if it is abstract and invariant on every structure of 

signature σ � {<}. 

   It is easy to see that ρ is invariant if and only if the boolean value of ρS(x) 

depends only on the isomorphism type of 〈S0, x〉where S0 is the unordered 
version of S. 

   The definition of invariant global relation ρ generalizes in a natural way to the 
case when ρ is K'-global where K is an arbitrary class of ordered structures of 

some signature σ � {<} closed under isomorphisms and reorderings.  Notice that 
an algorithm computing an invariant K'-global relation may use the given ordering. 

Example  Given a group with a linear order, the following algorithm computes the 
center of the group: 

C : = Ø; 

for x : = (the first element) to (the last element) do  

begin 

   flag := l; 

   for y := (the first element) to (the last element) do  

      if x•y ≠ y• x then flag : = 0; 

   if flag = 1 then C : = C��{x}  

end 

Theorem 1.15  The decision problem whether a given first-order sentence with 
possible occurrences of  <  yields an invariant global relation, is undecidable. 

Proof   Let α range over first-order sentences without occurrences of  <. The 
validity of α on all finite structures is undecidable (64), hence the validity of α 
on all finite structures with at least two elements is undecidable.  Let P be a 
unary predicate symbol that does not occur in α, and let β be a first-order 
sentence of signature {P,<} asserting that  <  is a linear order and that the first 
element in that order belongs to P whereas the last element does not. Then α is 
valid on all finite structures with at least two elements if and only if the disjunction 
(α or β) is invariant.                                                                                        ■ 

Remark  Theorem 1.15 may be strengthened by means of different syntactic 
requirements on the given first-order formula: use numerous known strengthenings 
of Trakhtenbrot's theorem. 
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Theorem  1.16   There is a first-order sentence φ such that the decision problem 
whether φ is invariant on a given ordered structure, is coNP complete. 

Proof   We consider a restriction of the 3-colorability problem which is a known 
NP complete problem (25). Let H be the graph with vertices 0, 1, 2, 3 and the 
edges {0,1}, {1,2}, {2,3}, {3,0} and {0,2};  H is a cycle of length 4 plus one 
additional edge. H  is 3-colorable, and every 3-coloring of  H assigns the same 
color to vertices 1 and 3. Let Γ be the set of graphs that include H as a component. 
It is assumed—with respect to the proviso of Section 1—that the vertices of any 
member of  Γ form an initial segment of natural numbers.  It is easy to see that the 
restriction of 3-colorability problem to Γ is NP complete. For every graph G in Γ 
let G* be the enrichment of G by means of the natural order of vertices. 

   The desired φ speaks about ordered graphs. It asserts that there are vertices x < y 
such  that  the  segments {v: v < x},  {v: x ≤ v < y}  and  {v: y < v}  constitute   a  
3-coloring.   It suffices to prove that an arbitrary member G of Γ is 3-colorable if 
and only if φ is not invariant on G*.   If G is not 3-colorable then φ fails on any 
ordered version of G and, therefore, is invariant on G*. 

   Suppose G is 3-colorable. Fix a 3-coloring of G.  Let Gl be any ordered 
version of G where the vertices of color 1 form an initial segment and the vertices 
of color 3 form a final segment.  Let G2 be an ordered version of G where vertex 
1 is the first and vertex 3 is the last. It is easy to see that φ holds on Gl and 
fails on G2; hence G is not invariant on G*.                                                          ■ 

 

SECTION 8.    IS THERE A LOGIC FOR NP∩coNP or R? 

We give some evidence that no logic captures NP∩coNP global relations or 
exactly R (random polynomial time recognizable) global relations. The argument 
is an elaboration of a remark in (28) and uses Sipser's result (59) that each of the 
two classes fails to have a complete problem (with respect to polynomial time 
reductions) under an appropriate oracle. The notion of logics was defined in the 
previous section. In connection with this section see a recent paper of Hartmanis 
and Immerman (40). 

First we consider class NP∩coNP.  Nondeterministic Turing machines M, N and a 
polynomial f will be said to witness that a class K of structures of some signature  
σ is NP∩coNP  if for every n and every σ-structure S of cardinality n, (i) S belongs 
to K if and only if M accepts S within time f(n), and (ii) S does not belong to K if 
and only if N accepts S within time f(n). 

Definition 1.21    A logic L captures NP∩coNP if: 
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1. For each L-sentence φ, the class MOD(φ) is NP∩coNP; moreover, for every 
signature a there is a Turing machine that, given an L-sentence φ of signature σ, 
produces a triple (M, N, f) witnessing that MOD(φ) is NP∩coNP; and 

2. Every  NP∩coNP class of structures of a fixed signature is definable by an L-
sentence. 

Theorem 1.17   If a logic L captures NP∩coNP then NP∩coNP has a complete 
problem with respect to polynomial time reducibility. 

Proof    Let σ be a signature comprising one unary predicate symbol. Fix a Turing 
machine A that generates all L-sentences of signature σ, and a Turing machine B 
that, given an L-sentence φ of signature σ, generates a triple witnessing that 
MOD(φ) is NP∩coNP.  Let Q be the set of tuples (α, φ, β, M, N, f, S, 1f(n)) such 
that (i) α is a computation of A, φ is an L-sentence generated by α, β is the 
computation of B on φ, (M, N, f) is the output of β, S is a σ-structure, n is the 
cardinality of S, 1f(n)  is a string of 1's of length n, and (ii) S satisfies φ. 

   The condition (i) is polynomial time checkable. The condition (ii) is NP 
(respectively coNP): guess a computation of M (respectively N) on S of length 
f(n) and verify that the computation is accepting.  Thus the decision problem for 
Q is NP∩coNP.  To show that this decision problem is NP∩coNP hard, we 
reduce to Q the decision problem for an arbitrary NP∩coNP class X of binary 
words.  If w is a binary word α1. . . αn  let Sw be the σ-structure with universe 
{0,1, ...,n} and relation {i: αi = 1}. (The universe contains n + l elements 
because it should be nonempty whereas n may be equal to 0.)  Since L captures 
NP∩coNP, there is an L-sentence φ with MOD(φ) = {Sw: w ε X}.  Let α be a 
computation of A that outputs φ, β be the computation of B on φ, and (M, N, f) 
be the output of β.  Obviously, w ε X iff  Sw ε MOD(φ) iff (α, φ, β, M, N, f, SW,  
1f(n+1) ) belongs to Q.                                                                                       ■ 

   Theorem 1.17  contrasts with Sipser's result (59) that,  relative  to some oracle ∆,  
NP∩coNP does not possess a complete problem. (Certainly no logic captures 
NP∩coNP under the oracle ∆ because the proof of Theorem 1.17 relativizes.)  We 
conjecture that if some logic captures NP∩coNP then something drastic happens 
like NP∩coNP = P or NP = coNP. It may be desirable to restrict further the notion 
of a logic capturing NP∩coNP. For example, one may request that L-sentences are 
polynomial time recognizable. 

Remark  The converse of Theorem 1.17 is true to the extent that, given an 
NP∩coNP complete problem Q, one can construct a set of "sentences" and a 
satisfaction relation that capture NP∩coNP. Define sentences of signature a as 
triples (M, f, σ) where M is a deterministic Turing machine able to take σ- 
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structures as inputs, and f is a polynomial.  Say that a σ-structure S of cardinality n 
satisfies φ = (M, f, σ) if M halts on inputs S within time f(n), and the result M(S) 
belongs to Q. 

   Definition 1.21 and Theorem 1.17 generalize to some other classes with well 
defined witnesses. We turn now to random polynomial time. Recall that a set K of 
strings in an alphabet ∑ is R if and only if there are a deterministic Turing machine 
M and polynomials f, g such that for every n and every string s ε ∑* of length n the 
following are equivalent: 

1. The string s belongs to K, 

2. There is a string t in {0, l}g(n) such that M accepts the pair (s,t) within time f(n), 
and 

3. For at least one half of strings t in {0, l}g(n), M accepts the pair (s,t) within time 
f(n). 

   We say that (M, f, g) witnesses that K belongs to R. Without loss of generality, 
we may suppose that fn ≥  gn for all n.  The definition obviously generalizes to the 
case when K  is a class of structures of a fixed signature. 

Definition 1.22   A logic L captures R if: 

1. For each L-sentence φ, MOD(φ) is R; moreover, for every signature σ there is a 
Turing machine that, given an L-sentence φ of signature σ, produces a triple (M, f, 
g) witnessing that {S: S satisfies φ } is R; and 

2. Every R class of structures of a fixed signature is definable by an L-sentence. 

Theorem 1.18  If a logic L captures R then R has a complete problem with respect 
to polynomial time reducibility. 

Proof   Similar to that of Theorem 1.17.                                                         ■ 

   Theorem 1.18 contrasts with Sipser's result (59) that, relative to some oracle, 
there is no complete problem for R with respect to polynomial time reducibility. 

 

SECTION 9.    MISCELLANY 

9.1    Sequences of Bounded-Depth Circuits 

We suppose here that signatures comprise only predicate symbols, and boolean 
circuits have unique output gates. Recall that, according to the proviso of Section 
1, the universes of structures are proper initial segments of natural numbers. 
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Definition 1.23  A boolean circuit C is formatted with respect to a signature σ and a 
positive integer n if input gates of C are labeled by sentences Q(i1, . . . , ir)  where 
Q belongs to σ, r is the arity of Q, and every ip < n. (Every input gate has exactly 
one label; hence, the number of input gates is bounded by the number of sentences 
Q(i1, . . . , ir).) 

Definition 1.24  A circuit C, formatted with respect to σ and n, accepts a σ-structure 
S of cardinality n if C outputs 1 when the input gates of C are set with respect to S 
(an input gate labeled Q(i1, . . . , ir) gets value 1 if S satisfies Q(i1, . . . , ir),  and 
value 0 otherwise). 

Definition 1.25 A class K of σ-structures is definable by a sequence of circuits C1, 
C2, . . . if every Cn can be formatted with respect to σ and n in such a way that the 
formatted circuit accepts a σ-structure S of cardinality n if and only if S belongs to 
K. 

Lemma 1.5  Let σ be a signature, φ be a first-order σ-sentence, and n be a positive 
natural number. There is a circuit Cn formatted with respect to σ and n in such a 
way that the depth of Cn is the logical depth of φ, and Cn accepts a σ-structure S of 
cardinality n if and only if S satisfies φ. 

Proof   Let σn be the extension of σ by individual constants 0, 1, . . . , n - 1.   By 
induction, turn any sentence α, whose signature is included into σn, into a 
formatted circuit αn. If α is atomic then αn is the circuit comprising one gate 
labeled α. The cases of conjunction, disjunction and negation are obvious. If α is 

�xβ(x) (respectively �xβ(x)) then join the circuits β(0)n, β(1) n, . . . , β(n - l)n  by an 
additional OR (respectively AND) gate. Finally, φn is the desired Cn.                   ■ 

   The sequence of circuits, constructed in the previous paragraph, is very uniform. 
In particular, it is log-space constructible i.e. there is a log-space bounded Turing 
machine that, given the unary notation for n, produces (the standard code for) Cn. 

   Let L0 be a logic that captures exactly log-space recognizable global relations of 
the empty vocabulary.  L0 can be the fragment of logic FO + DTC + <  (see 
Section 3) whose formulas contain no individual constants, no function symbols 
and no predicate symbols except for <.  L0 can be the calculus of primitive 
recursive functions of the empty vocabulary (see Section 6); in this case the 
formulas are equations t = 0. Let FO + L0 be the extension of first-order logic by 
L0 whose formulas are built from first-order formulas and formulas in L0 by first-

order means (boolean connectives and quantifiers �,�); the global function 
semantics for FO + L0 is obvious. 
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Theorem 1.19   (35)  Let K be a class of structures of some signature σ. The 
following are equivalent: 

1. K is definable by a log-space constructible sequence of circuits of bounded 
depth, 

2. K is definable by a sentence in FO + L0.                                                           ■ 

   We skip the proof here. The theorem generalizes for many other complexity 
classes (35). 

   Logic FO + L0 and many other extensions of first-order logic, considered above, 
were specially tailored to capture respective complexity classes. Logic FO + L0 is 
the most modest of these extensions. An interesting question arises whether first-
order logic itself captures any complexity class. Well, the answer to this question 
depends on the definition of complexity classes. The problem of the definition of 
complexity classes is a deep one, and we are not going to tackle it here. Let us 
only mention that Denenberg, Gurevich, and Shelah (17) have characterized first-
order definable sequences of bounded-depth circuits by means of symmetry and 
uniformity conditions. 

9.2   A Note on Topology on Finite Sets 

There is a definite analogy between (i) classes of unary global relations definable 
by sequences of circuits of bounded depth and polynomially bounded size, and (ii) 
Borel subsets of the Cantor discontinuum.  This analogy was exploited by Sipser 
in (60).  Reading Ajtai's paper (3), we found it useful to think in terms of Borel 
subsets of finite topological spaces. The definition of Borel subsets of finite 
topological spaces is given in this subsection. 

Recall that a topology is Tl (50) if all one-point subsets are closed; we are not 
interested here in topologies that are not T1.  Every finite T1 topological space is 
discrete, i.e., every subset is both closed and open. Thus, the theory of finite T1 
topological spaces seems to be quite trivial. However, one may ask how many 
intersections and unions does it take to express a given point-set in terms of sub-
basic open sets. This leads to a generalization of the Borel hierarchy to finite 
topological spaces. 

Definition 1.26    Xn  is  the  topological  space whose points are subsets of {0,1, ..., 
n - 1} and whose sub-basis comprises the n point-sets {P: i ε P}. 

   The analogous definition with the set ω of natural numbers instead of {0,1, . . . , 
n - 1} results in a topological space Xω homeomorphic to the Cantor Discontinuum 
[(50), §3, IX].  Borel subsets of Xω form the closure of the sub-basis 
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under complements, countable intersections and countable unions. This suggests 
the following: 

Definition 1.27    A subset of Xn is Borel of level 0 if it is sub-basic. It is Borel of 
level d, where d > 0, if it is the intersection of at most n Borel sets of levels less 
than d, or the union of at most n Borel sets of levels less than d, or the complement 
of a Borel set of a level less than d. 

   There is an obvious connection between Borel point-sets and boolean circuits 
with unique output gates. Suppose that C is a circuit with n input gates labeled by 
integers 0, . . . , n - 1.  In the obvious way, the input of C represents a point in Xn. 
C is said to accept a point P if the corresponding output is 1. C is said to recognize 
the set {P: C accepts P}. 

Claim 1   Let A be a subset of Xn, and d be a natural number. The following are 
equivalent: 

1. F is Borel of level d, 

2. There is a circuit C with n input gates labeled by integers 0, . . . , n - 1 such that 
the depth of C is at most d, the fan-in of C-gates is bounded by n, and C 
recognizes A. 

Proof   is clear.                                                                                                      ■ 

Definition 1.28    A global point-set  π  assigns a subset of  Xn to each  Xn. If there is 
a natural number d such that the specification of π  on each Xn is Borel of level d 
then π is Borel (of level d). 

Claim 2   The following are equivalent: 

1. tt is Borel, 

2. There is a bounded-depth polynomially-bounded-size sequence of circuits Cn 

such that each Cn recognizes the specialization of tt on Xn. 

Proof   is clear.                                                                                                      ■ 

   Let P be a unary predicate symbol.  A first-order sentence φ(P) in signature {P} 
defines a Borel global point-set {P: φ(P)} of level d where d is the logical depth of 
φ(P). First-order definable point-set π are symmetric in the following sense: if P1 
and P2 are subsets of Xn of the same cardinality then Pl belongs to is the 
specialization of  π  on Xn if and only if P2 does.  Some Borel global point-sets are 
symmetric in that sense but not first-order definable (17, 22). 
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PART 2. DYNAMIC STRUCTURES WITH BOUNDED RESOURCES 

One finds a great many formal languages in computer science: programming 
languages, query languages, etc. It is natural for a logician to ask what structures 
are suited to model those formal languages. For example, what are models for 
Pascal? Of course, it is not necessary to start with formal languages. One can ask 
what structures are appropriate to formalize machines, databases and other objects 
of interest in computer science. We adopt the unspoken assumption of 
mathematicians that in principle there are appropriate structures; the problem is to 
find them. 

SECTION 10.    DYNAMIC STRUCTURES WITH BOUNDED 
RESOURCES, AND TURING'S THESIS 

This section develops the ideas presented first in technical report (31) and is sort 
of an extended abstract for (34). I am thankful to Kit Fine for his comments on the 
report, and to Andreas Blass for many useful discussions. 

10.1   Abstract Machines with Bounded Resources 

The popular and useful abstraction of unbounded resources may be inappropriate 
under certain circumstances. For example, one may be reluctant to idealize his/her 
computer as a machine with unbounded memory if the computer keeps running 
out of memory all the time. 

In (31) and (33) we discussed a new kind of abstract machines, called dynamic 
structures or dynamic algebras, whose resources may be bounded. Sometimes it is 
easier to express one's arguments in a discussion. Please allow me the liberty of 
introducing an opponent (a skeptical graduate student). 

Objection 1   There is already a very well worked out formalization of machines 
with bounded resources. I mean finite state machines. Your dynamic structures 
with bounded resources are finite state machines too, aren't they? 

Answer   Yes, dynamic structures with bounded resources are finite state ma-
chines. But their theory does not reduce to the classical theory of finite state 
machines because the number of states may be overwhelming. Dynamic structure 
with bounded resources may capture the behavior of real computers (like PDP-11 
or Macintosh) or model real programming languages (like Pascal or Smalltalk). 
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It is not feasible to draw the diagram or to write down the transition table (or a 
regular expression) for such a finite state machine. 

Objection 2   I do not understand how a machine with bounded resources can model 
Pascal. Consider a Pascal program for computing factorials. A machine with 
unbounded resources is needed to provide an operational meaning to the program. 
Every machine with bounded resources fails to compute the factorial of some 
sufficiently large integer; it cannot give an adequate operational meaning to the 
program. 

Answer   A good point. The meaning will be given by a family of finite machines 
(in the same way as the meaning of a first-order formula is given by a family of 
first-order structures). A family of finite Pascal machines will be briefly sketched 
below. Here is a simpler example of a family: bounded-tape versions of a given 
Turing machine T with special end-of-tape marks. 

Objection 3   Let me ignore the end-of-tape marks (I guess that bounded-tape 
versions of T without end-of-tape marks form a legitimate family too). Then the 
computation of any bounded-tape version of T is an initial segment of the com-
putation of T, and the cut-off point is irrelevant to the meaning of the program. I 
would prefer to consider the computation of T itself rather than a pretty arbitrary 
collection of initial segments of the computation. 

Answer   Yes, in many cases, a machine with unbounded resources gives a cleaner 
operational semantics.  But not always. The end-of-tape marks were there for a 
reason. Machines with bounded resources may know their resources and utilize 
this knowledge. A program for bounded-tape machines may use the end-of-tape 
mark for different purposes; for example, the end-of-tape mark may be used for 
dividing the tape equally into a left and a right part and executing two different 
processes in a time-sharing fashion. More convincing examples of how abstract 
machines with bounded resources may use their knowledge of bounded resources 
come from real life. Think about operating systems. In particular, think about an 
operating system which may run on many computers and which starts with an 
inventory of the available resources. Of course, this program (the operating 
system) can be modeled by a machine with unbounded resources, but this is not 
necessarily the best way to provide an operational semantics to the program. 

10.2   Dynamic Structures 

The usual mathematical structures, and in particular first-order structures, are 
static. They do not change in time. Mathematicians tend to formalize dynamic 
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situations in a static way. Given a dynamic process in an n-dimensional space, a 
mathematician introduces an additional dimension for time and studies the 
resulting (n + l)-dimensional body which represents all states of the original n-
dimensional process at once. 

   Typical objects of computer science—machines, databases—are dynamic. They 
evolve in time. Of course, the same trick of representing all states at once can be 
used. This is exactly what you do when you draw the diagram of a finite 
automaton. Often, the trick does not work well. We believe that the difficulties are 
related to the overwhelming complexity of computing processes (versus, say, 
abstracted physical processes). There is no simple system of equations describing 
the behavior of a large time-sharing computer system. On the other hand, com-
puting processes often have a  certain simplicity in them: they evolve in discrete 
time and the states as well as atomic transitions are relatively simple. 

   The dynamic structure approach attempts to utilize the simple features of 
computing processes. A dynamic structure is a static structure (the initial con-
figuration of the dynamic structure) evolving in discrete time with respect to 
specified transition rules. To specify a dynamic structure one needs to specify a 
static structure and transition rules. 

   The notion of dynamic structure may strike as an old news. There are similar 
notions in the literature; let me mention only transition systems in Gordon Plot-
kin's report (55). We see the main novelty in the intended use of dynamic 
structures. The configuration of discourse is going to play a greater role than the 
set of all configurations; from that point of view logic of dynamic structures is 
similar to temporal logic. Configurations are full-fledged static structures which 
have usually several universes. Here are some relevant questions. Do the universes 
change? Can new universes appear? Can old universes disappear? Does the 
signature change? What is the form of transition rules? Some other important 
notions are: bounded resources, families of dynamic structures, the dynamic 
structure of discourse. 

   Only special classes of static structures are defined formally in mathematical 
logic: usual first-order structures, many-sorted first-order structures, standard 
second-order structures, nonstandard second-order structures, etc. The general 
notion of static structures remains informal. Similarly, we leave the general 
notions of dynamic structures informal and define formally only special classes of 
dynamic structures. The notion of a family of dynamic structures is left informal 
too. We require however that all members of a family have the same transition 
rules. 

   To have a nontrivial example of a dynamic structure, one may formalize a 
modest computing device (on some level of abstraction). In connection with (33), 
my student, Bob Blakley, has worked out a formalization of PDP-11/04, the 
smallest machine using DEC's well-known PDP-11 architecture. The resulting 
dynamic structure is an evolving many-sorted first-order structure with static 
universes, static signature and transition rules of a very simple form. 
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   Universes  of  the formalized PDF-11704 are Registers = {R0, ..., R7}, 

Addresses � {0,1}16, Words = {0,1}16, Opcodes, etc.  Elements of Registers 
represent the 8 registers of the computer. PDP-11/04 uses register R7 as the 
instruction pointer.  Elements of Opcodes represent legal assembly-language in-
structions in the PDP-11/04 instruction set. The set of addresses varies from one 
implementation of PDP-11 to another. To reflect this fact, the extent of Addresses 
is not fixed in  Blakley's formalization. 

   Many basic functions of the dynamic structure are static: arithmetical operations, 
the eight zero-ary functions (i.e. distinguished elements) Rl-R7 of type Registers, a 

function Addrtranslate from Words to (Addresses � {Error}), a function Getop 
from Words to Opcodes, etc.  Addrtranslate converts words (elements of Words) 
to addresses (elements of Addresses).  If a word w is an address then 
Addrtranslate(w) = w, otherwise Addrtranslate(w) = Error. The analog of 
Addrtranslate for some other computers may be more complicated; one reason is 
that words may be longer than addresses. 

   Some dynamic basic functions of the formalized PDP-11 are 

   Regcontents:  Registers → Words, 

   Contents:  Addresses → Words, 

   Currentop, a distinguished element of Opcodes. 

   The following transition rule is self-explanatory: 

   Currentop ← Getop(Contents(Addrtranslate(Regcontents(R7)))). 

Remark    The idea of bounded resources and the idea of dynamic character are 
independent. One can study infinite static structures, finite static structures, 
dynamic structures with unbounded resources, and dynamic structures with 
bounded resources. 

10.3   Turing's Thesis and Finite Dynamic Structures 

A strong form of Turing's thesis states that every computing device can be 
simulated by an appropriate Turing machine (24). The thesis loses some appeal if 
one restricts attention to computing devices with bounded resources because the 
resources of Turing machines are unbounded. This brings us to the question of an 
analog of Turing's thesis for the case of machines with bounded resources. 

   New thesis problem (first draft formulation). Define a modest class U (for 
'universal') of abstract machines with bounded resources such that every com-
puting device with bounded resources can be closely simulated by a U-machine 
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of comparable specification and information sizes, and every family of computing 
devices  with bounded  resources can be appropriately  simulated by  a family of 
U-machines. 

   We speak about a modest class, close simulations and comparable sizes in order 
to exclude some unsatisfactory solutions. Let us explain that. 

   The computing devices in question are supposed to be real devices satisfying 
some minimal assumptions. (Actually, it is a little more complicated. We should 
be talking about a computing device and a fixed level of abstraction, of omitting 
details.) A part of the desired solution is that U-machines are dynamic structures. 
This is not a complete solution. First, the notion of dynamic structures was left 
informal. Second, dynamic structures may be used as virtual machines (for 
example, to model higher level programming languages) and therefore may be 
more complex than needed for the thesis. The desired class U should be well-
defined and as simple as possible. 

   It is reasonable to assume that a computing device with bounded resources can 
be step-by-step simulated by a finite state transducer. (A finite state transducer is a 
finite automaton with output; a simulation is step-by-step if every step of the 
simulated machine corresponds to one step of the simulating machine.) Even if we 
ignore the question of families of finite state transducers, the reduction to finite 
state transducers should be treated with caution: the transition table of the 
simulating transducer may be much bigger than the description of the simulated 
device. The specification size of the simulating machine should be severely 
bounded in terms of the specification size of the simulated machine. 

   It would also be unsatisfactory if the number of states of the simulating machine 
too greatly exceeds the number of states of the simulated machine. The logarithm 
of number of states can be called the information size (9). Thus, the information 
size of the simulating machine should be severely bounded in terms of the 
information size of the simulated machine. 

   Bounded-tape versions of Turing machines with end-of-tape marks constitute 
one possible solution for the new thesis problem (31). An argument similar to 
Turing's informal proof of his thesis (66) establishes that for every computing 
device D with bounded resources there is an appropriate bounded-tape Turing 
machine that simulates D. This solution is unsatisfactory even if we put aside the 
question of the specification and information sizes: the simulations may be too 
complex and indirect. (Imagine, for example, that D is Apple's Macintosh in any 
of its incarnations.) 

Remark    One may argue that Turing's thesis itself has the same drawback. We 
agree; Turing machines are clumsy simulators. But who said that Turing's thesis 
cannot be improved? An early improvement of Turing's thesis was worked out by 
Kolmogoroff and Uspenski (48). So-called random access machines (1) are very 
popular. Very interesting machines were introduced by Schoenhage (58). 
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   Which simulations should be permissible? Step-by-step simulations are ideal. 
Are they too restrictive? Recall that, in the case of machines with unbounded 
resources, a simulation is called real-time if one step of the simulated machine 
corresponds to at most c steps of the simulating machine where c is a constant. 
One can adapt this definition to the case of machines with bounded resources by 
imposing a restriction on the constant c in terms of the specification and 
information sizes of the simulated machine. Then one can require that only real-
time simulations are permissible. 

   In (34) we intend to discuss more interesting solutions for the new thesis 
problem: Kolmogoroff-Uspenski machines with bounded resources, Schoenhage 
machines with bounded resources, random access machines with bounded re-
sources and the solution proposed in (33). Andreas Blass and the author continue 
to work on the problem (9); the joint work has greatly influenced this section. 

 

SECTION 11.    MODELS FOR PASCAL 

This section can be read independently. 

11.1   Preliminaries 

Imagine that you read a Pascal program and come across an assignment x:= x. 
What a silly thing to write, you may think. The assignment is obviously super-
fluous. Or is it there for a reason? Maybe it appears in the definition of a function 
procedure x in order to trigger the side effects of procedure x?  You check and find 
out that x is a variable of type INTEGER. If there were several processes, then the 
purpose of the assignment could be related to synchronization or claiming a shared 
variable. But no, this is standard Pascal with only one process. You can think up 
some other possible effects of the assignment in some other languages, but all that 
seems to be irrelevant to Pascal. You become convinced that the assignment can 
be deleted. But the deletion changes the program and its execution somewhat. 
Maybe the right reason for the assignment just did not pop up in your mind. You 
would like to be able to prove that the deletion does not change your program in 
any essential way. Your semantics of Pascal should facilitate easy proofs of such 
simple facts. 

   Semantics of programming languages is a very rich field (some of our sources 
appear in the list of references).  Still it seems to us that no known formal 
semantics is sufficiently convenient to deal with real-life imperative languages. 
"Unfortunately, all of the formal approaches to semantic definition require a great 
deal of sophisticated effort and produce a result which is impossible to read 
without extensive study," writes Ellis Horowitz in his Fundamentals of 
Programming Languages (43). 
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   We would like to model programming languages, and in particular Pascal, by 
means of dynamic structures with bounded resources. Recall that dynamic struc-
tures are generalizations of the many-sorted static structures used in mathematical 
logic. They evolve in discrete time; every configuration of a dynamic structure is a 
static structure. To specify a dynamic structure one should specify its initial 
configuration and transition rules. Recall also that dynamic structures with finite 
resources are finite state machines (rather than potentially infinite machines), and 
that semantics of a programming language is supposed to be given by a family of 
resource-bounded dynamic structures with the same language of initial 
configurations and the same finite set of transition rules. 

   The desired Pascal models are ideal Pascal machines that directly execute Pascal 
programs. Many questions arise immediately. In what form should Pascal 
programs be given? What is the language of initial configurations? Should sub-
sequent configurations have the same language or should the language of con-
figurations evolve? How much can be executed in one step? How simple should 
the transition rules be? How should one impose a bound on the memory? And so 
on, and so on. This section was written with the active participation of my 
graduate student Jim Morris. To answer the above questions, we tried to use rich 
experience of real-world Pascal implementations, the insight and achievements of 
present-day semantics of programming languages, and analogies in classical logic. 

   A family of Pascal models is sketched in Section 11.2. Answering our solic-
itation of problems, Albert Meyer sent us a number of simple claims about Pascal 
including the claim about the superfluousness of the assignment x:= x where x is 
an integer variable. In Section 11.3 we sketch proofs of three of Meyer's claims in 
our semantics. In the final Section 11.4, we discuss in particular the question of 
when two Pascal programs have the same meaning. 

   We barely touch upon the issue of bounded resources in this section. That issue 
and others (possible applications of semantics of programming languages go far 
beyond proving simple claims about existing programming languages) will be 
addressed in (36) and elsewhere. 

Acknowledgements    I am thankful to Jim Morris for help, to Albert Meyer for 
sending the problems, to Albert Meyer, David Gries, and my Michigan colleagues 
Andreas Blass, Bernie Galler, and others for useful discussions. 

11.2   Models for Pascal 

We shall outline a finite dynamic structure M(Prog) where Prog is a Pascal 
program.  Some parts of M(Prog) depend on Prog and some do not. One can 
abstract the underlying machine M which is a Pascal interpreter of a sort. For the 
sake of brevity, we will stress here the machine-like (rather than algebraic) aspects 
of M(Prog). 
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   The initial configuration of M(Prog) is a finite many-sorted static structure. 
Some of the universes do not depend on Prog: an interval of integer numbers, a set 
of real numbers, the boolean universe {true, false}, a set of identifiers, and so on. 
The interval of integer numbers is equipped with the usual linear order, (the 
restrictions of) the usual arithmetical operations, distinguished elements MAXINT 
and MININT. We treat relations as boolean-valued functions. The only basic 
function defined on identifiers is the boolean function of equality. (Thus, 
identifiers are seen as mere tokens. In practice the token are represented by strings 
of letters and digits starting with a letter. Several strings may represent the same 
token. It may be, for example, that two strings of length 16 or more represent the 
same token if they have the same initial segment of length 16.) 

   The program Prog is given in the form of a decorated1 parse tree which 
constitutes a universe in the initial configuration. Each type declared in Prog 
constitutes a universe of M(Prog). Many universes and many basic functions of 
M(Prog) are static; they are part of the initial configuration and do not change 
during the evolution of M(Prog). 

One semantical complication is related to the fact that Pascal allows the 
programmer to reuse identifiers and labels. The name of a procedure, a variable, 
etc.  may not identify the corresponding declaration uniquely. In order to provide 
unique names to different procedures, types and variables, we adopt a common 
convention. If a program Prog declares a procedure P1 which declares a procedure 
P2 which declares a procedure P3 (so that the procedures P1, P2 and P3 are of 
levels 1, 2 and 3, respectively, in Prog) then we will call the procedures (and the 
corresponding blocks)  P1, P1.P2,  P1.P2.P3   or  Prog.P1, Prog.P1.P2, 
Prog.P1.P2.P3,  respectively.  If a Pascal variable x is declared in a block B (so 
that B is the smallest block containing the declaration), it will be called B.x. The 
denotation of B.x will be called a raw variable because in general the block B may 
be called recursively, and B.x may have several incarnations which are variables in 
their own right. 

   The complication arising from the reuse of identifiers and labels is not serious. 
Whenever one comes across a node of the parse tree decorated with an identifier, it 
is always clear which declaration of the identifier is relevant. To reveal this 
information, we use a special static function Decl which allows us to compute the 
Signification of the identifier in question. In the case of a variable name, 
Signification indicates the relevant raw variable. Signification is a dynamic 
function which solves, in particular, the aliasing problem (63). 

Remark   One may prefer to create the types and to compute the necessary values 
of the Decl function during the evolution of the machine. For some languages that 
may be the only alternative, but Pascal programs explicitly declare 

______________ 
1The decoration reflects the so-called static semantics of the program. 
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new types and use static binding of variables, which allows us to have all types 
and the Decl function from the beginning. Applying the principle of separation of 
concerns (26), we would like to get some relatively easy syntactical things out of 
the way by incorporating them into the initial configuration. 

   Transition rules of M specify the evolution from a given state to the next one. 
They do not depend on the given program. Let us perform an imaginary exper-
iment. Imagine that you (rather than a computer) execute a Pascal program. What 
information should you keep in mind (or on paper)? You should know where you 
are currently in the program and where you should return after executing a 
procedure. You should know which variables exist and what their values are. You 
may need to remember the results of different subcomputations, in particular the 
values of different expressions and subexpressions; etc. 

   To record the current position in the program, M(Prog) has a 0-ary dynamic 
function (i.e. a dynamic distinguished element) called the active node, or control, 
whose possible values are nodes of the parse tree. Usually, one transition takes the 
control to a child or the parent of the currently active node. The exceptions are 
related to goto statements and procedure calls. 

   To record procedure calls and where to return from them, M(Prog) has a stack 
that will be called the procedure stack. The restriction allows us to get away with a 
simpler procedure stack. Formally speaking, the procedure stack is function from 
an initial segment of natural numbers to nodes of the parse tree. When a procedure 
is called at some node N of the parse tree,  M(PROG) "pushes" N onto the stack 
and the control is transferred to Signification(N). When the execution of the 
procedure is finished,  N is "popped off" the stack and control returns to N. 

   To record values of Pascal variables, M uses a dynamic function V-val. The 
domain of V-val contains all raw variables. To record the values of all incarnations 
of B.x, V-val maintains a special B.x-stack,  a function from an initial segment of 
natural numbers to an appropriate type augmented with an additional value 
'uninitialized.'  Whenever control enters the block B, the value 'uninitialized' is 
pushed onto the B.x-stack; and when the execution of B is finished, the top of the 
B.x-stack is popped off. 

   A dynamic function N-val records (on appropriate nodes of the parse tree) the 
results of different subcomputations, in particular the values of different expres-
sions and subexpressions. We use "OK" to indicate the successful execution of a 
command. (Another a priori possible result of the execution of a command is 
"Error.")  Since procedures may be called recursively, N-val  assigns a stack of 
values to a node.  Consider for example the evaluation of (a + b) + f(c) in the body 
of  a  function  procedure  f.   The value of a + b is "hanged" on some node N  if  
"a + b" is evaluated during the first call on f, then a new value of 
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a + b may be "hanged" on the same node N on top of the previous values each time 
the recursive call on f  is executed, and so on. 

   There is also a universe called Space whose elements are called units. In 
implementations, a unit may correspond to one byte, to two bytes, or even to a 
single bit. A static function Size tells how many units of Space are needed for this 
or that purpose, and a dynamic function Available tells how many units of Space 
are available. 

   That ends our incomplete sketch of M(Prog). We did not specify any transition 
rules, did not discuss the parameter mechanism, did not discuss how the input is 
provided, etc. The details—for Modula-2 rather than Pascal—will appear in (36). 

Notice that we are talking about a whole class PM of Pascal models. What may 
distinguish one member of PM from another?  The interval of integers, the set of 
identifiers, etc. All members have literally the same transition rules. (Transition 
rules are given syntactically; they are written once for all members of PM.) The 
meaning of a Pascal program Prog is given by dynamic structures M(Prog) where 
M varies over those members of PM which contain all identifiers used in Prog. 
This is similar to the situation in mathematical logic where the global meaning of a 
first-order formula is given by the local meanings of the formula on those 
structures whose signatures include that of the formula. 

11.3   Three Simple Problems of Meyer 

For expository purposes, we allowed ourselves slight modifications of the original 
problems. In this subsection, a program means a Pascal program. 

Claim 1    (The case of the superfluous statement.) 

Let Prog2 be the result of deleting an assignment  x := x, where x is an INTEGER 
variable, in a program Progl. Then Prog2 is equivalent to Progl. 

Claim 2    (The case of the superfluous variable declaration.) 

Suppose that a program Progl contains a procedure Progl.P with declaration 

PROCEDURE P;  

VAR x: INTEGER;  

BEGIN 

. . . 

END; 

where the body does not mention x.  Let Prog2 be the result of deleting the 
declaration of P.x in Progl.  Then Prog2 is equivalent to Progl. 
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Claim 3    (The case of the superfluous procedure declaration.) 

   Suppose that a Pascal program Progl has parameter-free procedures Progl.P, 
Prog 1.Q and Progl.Q:P such that the declarations of P and Q.P are identical and 
the free identifiers of Q.P are not captured within Q.  Let Prog2 be the result of 
deleting the declaration of Q.P in Progl. Then Prog2 is equivalent to Progl. 

Clarification 1   What does it mean to delete an assignment, a variable declaration or 
a procedure declaration? To simplify the exposition, we suppose that we are 
allowed to use the empty statement, the empty variable declaration and the empty 
procedure declaration. Then the deletions can be interpreted as replacements with 
appropriate empty objects. Notice that if the assignment was labeled then the new 
empty statement is labeled. 

Clarification 2   What does it mean that two Pascal programs are equivalent? This is 
a complicated question; it will be addressed in the next subsection. In this 
subsection two programs will be called equivalent if, provided the necessary 
resources, they exhibit the same input-output behavior. In other words, programs 
Progl and Prog2 are equivalent if they have the same input domain D, and for 
every Pascal model M and every input X in D the following condition is satisfied. 
If M contains all identifiers that occur in Progl or Prog2 and if M(Progl),  
M(Prog2) do not run out of memory on X  then either both structures M(Progl), 
M(Prog2) converge on X or both structures diverge on X, but in either case the 
structures produce identical outputs on X. 

   Claim 1 was already discussed informally.  Now let us discuss informally 
Claims 2 and 3. 

   The case of the superfluous variable declaration.  Even though x does not occur 
in the body of P, some procedure Q with a free integer variable x may be called 
during the execution of P. The free variable x of the procedure Q will be 
interpreted as B.x where B is the least block that contains the appropriate dec-
laration of Q and declares an integer variable x. Obviously, B is different from the 
block of P, and B.x is different from P.x. So the deletion of the declaration of P.x 
won't matter. 

   The case of the superfluous procedure declaration.  Deleting Q.P means that 
calls on Q.P in Progl will be interpreted as calls on P in Prog2. Since P and Q.P 
are parameterless procedures with identical declarations, the execution of P can 
differ from the execution of Q.P only if the binding declaration of some free 
identifier I of P differs from the binding declaration of the free identifier I of Q.P, 
which means that Q contains a declaration of I, which means that I is captured 
within Q, which is impossible. 
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Proof Sketch for Claim 1   Given a machine M, let Mi = M(Progi) and Ti be the 
parse tree of Progi.  T2 is obtained from T1 by replacing the subtree t1 of an 
assignment x:= x with a single-node tree t2 corresponding to the empty statement. 
Let T be the common part of T1and T2. 

   Call a state of Mi black if its active node is in T, otherwise call it red. (The terms 
"black" and "red" are related to the expressions "to be in the black" and "to be in 
the red.")  Say that a state S1 of Ml and a state S2 of M2 agree if 

1. the active nodes of S1 and S2 coincide (which means in particular that both 
states are black), 

2. the procedure stacks and the V-vals coincide, and 

3. the N-vals coincide on T. 

   Say that a sequence of states of Ml and a sequence of states of M2 agree if 
erasing all red states in both sequences results in two sequences of the same (finite 
or infinite) length where the corresponding members agree. It suffices to prove 
that the computations (viewed as sequences of states) of Ml and M2 on the same 
input agree. 

   In the initial states, the active nodes are the roots of the respective parse trees, 
and the procedure stacks and the functions V-val, N-val are empty; thus the initial 
states agree.  Suppose that Si is a black state of Mi, and the states S1, S2 agree. 
Then 

1. S1 is final (halting) if and only if S2 is so, 

2. the successor of S1 is black if and only if the successor of S2 is so, 

3. if the successors are black then they agree, and 

4. if the successors are red then for neither i is Si the last black state of Mi. 

   It remains to prove that if the successors of S1, S2 are red then the first black 
state after S1 agrees with the first black state after S2.  Let us see what happens 
when each Mi goes through the red states following Si.  The active node X of Si is 
either the parent of root(ti) or the root of the subtree of a goto statement.  In either 
case the control leaves X without changing the N-val at X.  No procedure is called 
or exited when Mi goes through the red states, therefore the procedure stack does 
not change. The V-val does not change because the only relevant raw variable is 
B.x, where B is the block of ti, and the B.x-stack does not change. The restriction 
of the N-val to T does not change because, in the absence of procedure calls, the 
N-val changes only at the active node. Eventually the control finds its way to the 
parent of root(ti), and Mi arrives to some black state Si'. Obviously, S1' and S2' 
agree. 
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Remark   One may wonder whether there is any difference between Si and Si'. 
The answer is yes.  In Si, the top value of the N-val at root(ti) is "undefined"; 
whereas in Si', the top value of the N-val at root(ti) is "OK." 

Proof Sketch for Claim 2  The proof is similar to that of Claim 1. There are only 
two important differences. One is related to the definition of agreeing states. The 
requirement that the two V-vals coincide is replaced by the requirement that the 
two V-vals coincide on the domain of V-vals of M2. The modification is necessary 
because the domain of V-vals of Ml contains an additional raw variable P.x. 

   The second difference of importance is related to the verification that the black 
successors of agreeing states agree. The transition may deal with an integer 
variable x,  but—as we explained above in the informal discussion—Progl will 
never interpret that x as P.x. Moreover, the two programs will interpret x in the 
same way. What we need is a separate simple lemma that the two Decl functions 
coincide on the common part of the parse trees. • 

Proof Sketch of Claim 3   Again, the proof is similar to that of Claim 1. Let Mi = 
M(Progi) and Ti be the parse tree of Progi.  T2 is obtained from T1 by replacing 
the subtree t(Q.P) of the declaration of Q.P with a single-node tree corresponding 
to the empty procedure declaration. Let t(P) be the subtree of the declaration of P, 
and let T be the common part of T1 and T2. 

   This time we do not need red states: when the active node of Ml traverses t(Q.P), 
the active node of M2 traverses t(P).  One little complication in the proof is that 
the corresponding states of Ml and M2 may have somewhat different V-vals (even 
though the V-vals have the same domain) and somewhat different restrictions of 
the N-vals to T.  To overcome this difficulty, we introduce extended stacks. The 
extended stacks are imaginary, they are not parts of our Pascal models. 

   Let B. x be an arbitrary raw variable of an arbitrary M(Prog). The V-val of 
M(Prog) maintains a B.x-stack. The extended B .x-stack  is the B.x-stack possibly 
"diluted" with copies of a new item 'empty'. Whenever a block different from B is 
called, a copy of 'empty' is pushed on the extended B.x-stack, and whenever any 
block is exited, the top of the extended  B.x-stack is popped off. The N-val assigns 
stacks of values to nodes; the corresponding extended stacks are defined in a 
similar way. 

   Consider the extended stacks of two raw variables B1.x and B2.x, where the 
blocks B1 and B2 are different. It is impossible that for some i, the extended stacks 
have i-th items that are both different from 'empty'.  This allows us to merge the 
two extended stacks into a new stack whose height is the minimum of the heights 
of the two given stacks.  Suppose that u is the  i-th item of the extended B1.x-stack 
and v is the i-th item of the extended B2.x-stack. What is 
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the i-th item w in the new stack?  If u differs from 'empty' then w = u; if  v differs 
from 'empty' then w = v; otherwise w is 'empty.' 

   Now we are ready to define agreeing states. A state S1 of Ml agrees with a state 
S2 of M2 if the following conditions (a)-(d) are satisfied. 

(a) Either the active node of S1 coincides with the active node of S2, or the active 
node of S1 is in t(Q.P) and the corresponding node of t(P) is active in S2. 

(b) The procedure stacks of S1 and S2 coincide. 

(c) For every raw variable B.x, declared within the block of P, the extended B.x-
stack of S2 is the merger of the exttended B.x-stack and the extended Q.B.x-stack 
of S1. For every other raw variable C.y, the C.y-stacks of S1 and S2 coincide. 

(d) For every node N in T-t(P) the N-stacks of S1 and S2 coincide.  If N  belongs to 
t(P) and N' is the corresponding node in t(Q.P) then the extended N-stack of S2 is 
the merger of the extended N-stack of S1 and the extended N-stack of S1. 

   It is easy to check now that for every input I, the computation of Ml on I 
and the computation of M2 on I  have the same length, and the corresponding 
members agree.  It follows that Progl and Prog2 are equivalent.                ■ 

 

11.4   Final Remarks 

11.4.1   Equivalent Programs 

Let us address the question 

           (*)    When do two Pascal programs have the same meaning? 

The equivalence relation of Section 11.3 is one answer to (*).  Under certain 
circumstances it may be unsatisfactory. Imagine that Progl and Prog2 solve the 
same NP problem and are equivalent in the sense of Section 11.3, but Progl works 
in linear time whereas Prog2 works in exponential time. It does not seem right to 
consider them as having the same meaning. One may refine the equivalence 
relation of Section 11.3 to give different answers to (*).  One may require, for 
example, that the computations of Progl and Prog2 simulate each other in real 
time, or that the histories of global variables are identical. (The proof of each of 
the three claims above establishes both stronger equivalences.) 

   We think that there are many reasonable answers to (*) and that an appropriate 
answer depends on the circumstances. 

   It is interesting to compare question (*) with the similar question for first-order 
formulas. The standard answer to the latter question is that two first-order 
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formulas have the same meaning if and only if they are logically equivalent (i.e., 
define the same global relation). This ignores the computational aspect of for-
mulas, in particular the cost of computing corresponding relations. 

11.4.2   Distinguishing Features of the Proposed Semantics 

Ellis Horowitz writes [(43), Section 2.1]: "Interpretative semantics begins by 
defining an abstract machine. This machine supports a simple set of operations and 
data structures. Then the semantics of the language being defined is given by a set 
of rules which show how programs will be translated onto the abstract machine. 
The Vienna Definition Language (70), which was developed as a means for 
formally defining PL/1, is the prime example of this approach." Our semantics is 
interpretative (or operational) because of the use of abstract machines, but it is 
somewhat different. 

1. We define a family of abstract machines with bounded resources rather than one 
abstract machine with unbounded resources. Each machine gives a local meaning 
to a program, and the family gives the global meaning. (From that point of view, 
the semantics can be called global or multi-model.) Multi-model semantics is 
especially appropriate to handle implementation defined constants. (If your Pascal 
model has all integers then what is the meaning of MAXINT?) As a matter of fact, 
the presence of implementation defined constants makes modeling easier. 

2. We tailor our machines to the given language (rather than translate the given 
language to the fixed language of a unique abstract machine). In this section, we 
described Pascal machines. We considered also models for different variations and 
extensions of Pascal (in particular, to check that passing a simple variable by name 
has the same effect as passing it by reference). In (36), we describe Modula-2 
machines. We intend to model languages for parallel and distributing computing, 
and different other languages. 

3. Our machines are algebraic structures of a sort, namely dynamic structures. (We 
would call the proposed semantics algebraic if the term were not taken (27).)  To 
explain what we mean by the algebraic character of our models, let us point out 
the difference between usual algebraic structures, say graphs, and their 
representations. One does not care about the nature of the vertices, may not have 
unique names for the vertices, does not distinguish between isomorphic graphs. 
Similarly, we do not care about the nature of the elements of our models, may not 
have unique names for the elements, do not distinguish between isomorphic 
models. (For example, for any member M of the class PM of Pascal models, any 
permutation of identifiers gives rise to an automorphism of M.) 
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11.4.3   Solicitation 

The examples above suggest using the proposed semantics for proving general 
properties of programs and correctness of different transformations (like source-to-
source transformations employed by optimizing compilers). Dealing with two 
models of different levels of abstraction, we use the approach for proving cor-
rectness of source-to-target transformations (36). A related theoretical problem is 
to work out a useful notion of homomorphism of dynamic structures. 

   We are soliciting interesting and challenging problems about Pascal or other 
(real or imaginary) imperative languages. We are especially interested in problems 
related to limited resources. 

 

APPENDIX.    TWO-WAY MULTIHEAD AUTOMATA 

A two-way multihead automaton can be described as a multihead Turing machine 
without any work tape. It is well-known that, as recognizing devices, deterministic 
(respectively, nondeterministic) two-way multihead automata are equivalent to 
deterministic (respectively nondeterministic) log-space bounded Turing machines. 
Hartmanis and Hunt say in their 1974 paper (39) that this is a well-known fact and 
refer for a more complete proof to a 1972 paper of Hartmanis. It is also well-
known that the equivalence survives if alternation is allowed. For reader's 
convenience, we prove here these facts. 

Remark   To accommodate naturally standard representations of structures (see 
§1), we allow Turing machines and two-way multihead finite automata to have 
several input tapes. One of these input tapes is the universe tape that contains the 
unary notation for the cardinality of the given structure. We will ignore structures 
of cardinality 1, and will suppose that the end-cells of the universe tape are 
specially marked. 

Theorem 1.20   A global relation is recognizable in log-space by a deterministic 
(respectively nondeterministic, alternating) Turing machine if and only if it is 
recognizable by a deterministic (respectively nondeterministic, alternating) two-
way multihead finite automaton. 

Proof   The "if" implication is easy (and will not be used): record the current 
positions of the automaton heads on a work tape. 

   To prove the "only if" implication, suppose that a log-space bounded Turing 
machine M recognizes the global relation in question. Let n be the length of the 
universe tape. Without loss of generality, we can assume the following about 
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M: it has only one work tape, on each step the work tape head either writes or 
moves but not both, the work tape alphabet is {0,1} where 0 is also the blank, the 
end cells of the work tape never hold zeros, initially the head of the work tape is in 
the leftmost position, and a configuration of M is accepting if and only if the 
corresponding internal state is one of the specially designated accepting states. 

   Let u be the content of the initial segment of the current work tape up to and 
including the position of the head, v* be the content of the corresponding final 
segment, and v be the reverse of v*. The strings u and v are binary notations for 
some numbers that uniquely define the content of work tape. The symbol observed 
by the work tape head is exactly the parity of u (0 if u is even and 1 otherwise).  If 
the work tape head changes 0 to 1 (respectively 1 to 0)  then u:= u + 1 
(respectively u:= u - 1) and v does not change.  If the work tape head moves to the 
right then u:= 2u + δ and v:= (v - δ)/2 where δ is the parity of v.  If the work tape 
head moves to the left then u:= (u- δ)/2 and v:= 2v + δ where δ is the parity of u. 

   Since the length of the work tape is bounded by a multiple of log n, the numbers 
u and v are bounded by some nk. Thus, 

                                       u = ∑i<k αin
i    and    v = ∑i<k βin

i     

where  αi, βi < n for each i.  The desired two-way multihead automaton A rep-
resents u  and v  by 2k heads on the universe tape.  Using a few auxiliary heads, 
A is able to compute the parities of u, v and to perform the operations u:= u + 1, 
u:= u - l,  u:= 2u + parity(v),  v:= [v - parity(v)]/2,  etc. mentioned above. 
   Some internal states of A code the internal states of M, in addition A  has 
auxiliary internal states. When A is in the internal state q' coding an internal 
state q of M, the configuration of A codes a configuration of M; if q is existential 
(respectively universal) then so is q'.  The auxiliary internal states of A are de 
terministic.  If M starts in the initial configuration C0 and goes through subsequent 
configurations C1, C2, etc. then A starts in the initial configuration coding C0, 
goes through a series of configurations with auxiliary internal states and arrives 
to the configuration coding C1, goes through a series of configurations with 
auxiliary internal states and arrives to the configuration coding C2, etc. A con 
figuration of A is accepting if and only if it codes an accepting configuration of 
M. It is easy to see that A accepts a given structure if and only if M accepts 
it.                                                                                                                     ■ 

Corollary    A global relation is polynomial time recognizable if and only if it is 
recognizable by an alternating two-way multihead finite automaton. 

Proof    Polynomial time equals alternating log-space (13).                              ■ 
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   Let us consider more closely the computation of a two-way multihead automaton 
A that recognizes a global relation ρ.   A can be deterministic, nondeterministic or 
alternating.  Represent the position of a head h on a tape of length np by p-tuple 
xh0, . . . , xh(p-1)  with the intended interpretation ∑xhi•n

i.   Here n is the length of the 
universe tape and each xhi is a natural number <n.   Further, represent the j-th 
internal state of the automaton by a q-tuple y1, . . . , yq  where q is the number of 
internal states, yj = 1  and yi = 0 for i ≠ j.   Thus there is an r such that every 
configuration of A is represented by an r-tuple of natural numbers <n.  Without 
loss of generality, we may assume that A has a unique accepting configuration and 
that both in the initial and in the accepting configuration of A all heads are in the 
leftmost positions. Then the r-tuples Initial and Final, representing the initial and 
the final configurations respectively, consist of zeros and ones. 

Claim   There is an FO + < formula Next satisfying the following.  Let S be a 
structure in the domain of ρ, w  be a tuple of elements of S whose length equals the 
arity of ρ, and x, y be r-tuples of elements of the universe of S.  Then Next(w,x, y) 
holds in S if and only if x, y represent configurations of A on inputs (S, w) and A is 
able to go from configuration x to configuration y in one step. 

Proof   The desired formula Next is a conjunction where each conjunct describes 
(in the obvious way) one instruction of A. (The variables w appear since there 
are reading heads on the corresponding input tapes.) • 

Remark   The formula Next is especially simple if one uses the successor function 
(rather than order)  and  individual constants 0 and End. If the universe is {0, . . . , 
n - 1}  then  End is interpreted  as  n - 1. To make the successor function total, 
define Successor(End) = 0 or Successor(End) = End. 

   In the rest of Appendix, a global function is a partial a-global function of type 
Universep →  Universeq  for some  σ, q, p;  such  global  function assigns to each 
σ-structure S  a p-ary  q-coary operation on the universe of S.  Two-way multihead 
automata were defined as Turing machines without working tapes. They may have 
output tapes however. 

Theorem 1.21   A global function is computable by a deterministic log-space 
bounded Turing machine if and only if it is computable by a deterministic two-
way multihead automaton. 

Proof   Essentially the same proof as that of Theorem 1.20. If the simulated 
Turing machine M writes on an output tape in a configuration x then the 
simulating automaton A does the same in the configuration that codes x.                ■ 
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