Chapter 1

L ogic and the Challenge of Computer Science*
YURI GUREVICH'

Abstract—Nowadays computer science is surpassing mathematics asthe primary
field of logic applications, but logic isnot tuned properly to the new role. In
particular, classical logic is preoccupied mostly with infinite static structures
whereas many objects of interest in computer science are dynamic objects with
bounded resources. This chapter consists of two independent parts. Thefirst partis
devoted to finite model theory; it ismostly a survey of logics tailored for
computational complexity. The second part is devoted to dynamic structures with
bounded resources. In particular, we use dynamic structures with bounded
resources to model Pascal.

INTRODUCTION

These days computer scienceis characterized by an explosive growth in activities
intimately related to logic. Consider for example formal languages. For years
formal languages were in the private domain of logicians. But what formal
language is most popular today? Isit a Hilbert type predicate calculus or the
Genzen sequent calculus? Neither. The most popular formal languages of today
are programming languages. Another kind of popular formal languages are da-
tabase query languages. Some other formal languages emerge in artificial intel-
ligence like languages for knowledge representation. Old discussions on names,
denotations, types, etc. are suddenly revitalized to unprecedented magnitude.
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2 L ogic and the Challenge of Computer Science

Thework on axiomatic semantics, logic programming and verification isrelated
to classical proof theory; the work on computational complexity isrelated to the
classical theory of algorithms. Even propositiond logic is nat |eft untouched by
developmentsin computer science; for almost any number k between 3 and 20,
thereisacommercid logic circuit simulator based on k-valued logic (41).

Thisisatogether good news for logicians. Logic grows morereevant to
computer science than any other part of mathematics. But the new applications
call, we believe, for new developmentsin logic proper. Firgt-order predicate
calculus and its usua generdizations are not sufficient to support the new ap-
plications. On the other hand, the new devel opments will most probably build on
existing achievements of logic. In this connection it isworth trying to understand
what made classical mathematical logic so successful.

Even though logic is an ancient subject, the origins of modern mathematical
logic are closdly related to the discovery of paradoxes and the subsequent crisisin
the foundations of mathematics (47). In 1930 came the triumph of Godel’s
completeness theorem. The syntax of first-order predicate calculus and its se-
mantics were proven to match perfectly. In addition first-order logic was re-
strictive enough to avoid paradoxes and expressive enough to provide a basis for
Zermelo-Fraenkel set theory and resolve this way, to alarge extent, the
foundational crisis. This perfect match of syntax and semantics together with a
reasonabl e expressive power made first-order logic an invaluable tool and a source
of innumerable generdizations.

Extremely important features of first-order logic are aformal language and a
clear notion of models. The models are so-called first-order sructures or, Smply,
structures. (Some people object to the term "first-order structure” on the ground
that logic isfirst-order rather than structures. Thisisagood point. But some
structures are not firg-order, topological spaces for example; and we all know
exactly what first-order structures are.) This familiar pattern—a formal language
with well-defined model s—persists through familiar generalizations of first-order
logic.

Let us mention another interesting feature of first-order logic. Even though a
consistent first-order theory has usually a multitude of models, the theory itself
does not refer directly to different models; it "speaks' about "the" mode of
discourse.

Classical logic facilitated numerous and impressive achievements. Let us men-
tion only the Church-Turing thesis and the Godel-Cohen resol ution of the con-
tinuum hypothesis. It seems that we (the logi cians) were somewhat hypnotized by
the success of classical systems. We used first-order logic whereit fitswell and
whereit fitsnot so well. We went on working on computability without paying
adequate attention to feasibility. One seemingly obvious but neverthel ess
important lesson isthat different applications may require formalizations of
different kinds. It is necessary to "listen" to the subject in order to come up with
theright formaization. (We philosophized on thistopic in [30].)
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Introduction 3

An important feature of many computer science objectsis finiteness. Relational
databases constitute an especially important example. Finiteness does not seem to
be such agreat novelty in classical logic. Nevertheless it poses anontrivial
challenge. Being so closaly related to foundations of mathematics, classical logic
is preoccupied with infinity. Many famous theorems collapse when only finite
structures are allowed; among them are Godel’ s Completeness Theorem, Craig's
Interpolation Theorem, Bern's Definability Theorem and the Substructure Pres-
ervation Theorem (29).

Variants of first-order logic serve as standard relationa query languages (15,
67), but the expressive power of first-order logic isnot sufficient for many
purposes (2). On the other hand, second-order logic is overly expressive. It
expresses queries that are too hard to compute. Even existential monadic second-
order formulas can express NP complete queries. Of course, the notion of what is
hard may change from one application to ancther. Oneideaisto fix areasonable
complexity class, like polynomia time, and to devise an intermediate logic that
"captures' this complexity classi.e. expresses exactly the queries of that com-
plexity. Theidea happensto be realizable to an extent. The pioneering papers
include those of Aho and Ullman (2), Chandra and Harel (12b), Fagin (20),
Immerman (44), and Vardi (68). In particular, Immerman and Vardi proved that,
in the presence of linear order, the least-fixed-point extenson of first-order logic
captures polynomial time. The program of designing logics to capture complexity
classes was clearly spelled out in (45) where Immerman captured log-space and a
number of other natural complexity classes. We have written on finite model
theory and logic tailored for complexity in different places; seein particular (29).

Part 1 (Sections 1-9) of this chapter is devoted to finite model theory; it is mostly
a subjective survey of logicstailored for computational complexity. Section 1
contains provisos and definitions that are used throughout Part 1. In particular, the
notions of global relations and global functions are introduced; these notions
provide convenient semantics for complexity tailored logics. In Sections 2, 3, 4
and 6 we consider different extensions of first-order logic by additional constructs;
in the presence of linear order the extended logics capture natural complexity
classes. In Section 5 we consider two logics with an emphasis on functions rather
than predicates; alinear order isbuilt in, and the logics capture log-space and
polynomial time respectively. Section 7 is devoted to those properties of structures
which do not depend on presentation. In Section 8, some evidenceis given that
certain familiar complexity classes cannot be captured by any logic. Circuit
definability and topology on finite sets are briefly discussed in Section 9.

Remark Several relevant issues are left out in this survey. In particular, we do
not discuss derivability in first-order predicate cal culus. The questions of
expressibility and derivability are quite different. For example, no first-order
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4 Logic and the Challenge of Computer Science

formula g expresses on finite graphsthat (X, y) belongsto the transitive closure of
the edgerdation E. Thisiswell known (21, 23, 29) and remainstrueeven if ¢ is
allowed to use additional predicate symbols: just consider the case when all
additional relations are trivial. On the other hand, the firg-order formula

[Vuv(Euv — Tuv) & Yuvw(Euv & Tvw — Tuw)] — T(X,y)

is derivable from the diagram of an arbitrary finite graph if and only if (X, y)
bel ongs to the transitive closure of the edgerelation E.

Another important feature of many computer science structures, which is harder
to swallow, istheir dynamic character. Mathematical structures (graphs, groups,
topological spaces, etc.) do not change in time whereas computer science objects
(databases, machines) often do. Considering time as anew dimension, a
mathematician turns a dynamic situation into a static one. Complexity consid-
erations may make such atransformation inadvisable in computer science (see
Section 10 in this connection).

In Part 2 of this chapter we generalize the gatic structures of mathematical logic
to dynamic gtructures. We are especially interested in dynamic structures with
bounded resources. In Section 10, among other things, we discuss the adaptation
of Turing'sthesis to the case of machines with bounded resources. In Section 11,
on the example of Pascal, we demonstrate an approach to semantics based on
dynamic structures.

There are gtill mathematiciansthat consider computer science alower subject.
There are former logicians that work now in computer science or computer
applications and consider logic not very relevant to their new occupation. We
happen to think that computer science badly needs what |ogicians are supposed to
do best: logic. The situation seems to us reminiscent of that in the beginning of the
century. Again we face most basic questions like what is the right logic and even
what aretheright structures.

Acknowledgements. This chapter grew out of my part in the Course on Com-
putation Theory in the International Center for Mechanical Sciences, Udine, Italy
in September-October 1984. | am happy to thank the organizer—Dr. Egon
Borger—and the Center for the invitation, and the listeners for their attention,
good will and hard work. Special thanks are dueto Dr. Klaus Ambos-Spies who
faithfully recorded my lectures. An edited version of the lectures was published as
atechnical report (32). | am thankful to John Holland for his comments on the
report. In Summer and Fall of 1986, the report was updated; in particular, Section
10 was enhanced and Section 11 was added. These two sections carry their own
acknowledgements, but | am only too glad to repeat herethat | am thankful to Kit
Fine Bernie Galler, David Gries, Albert Meyer, and Jm Morris. Finally, it gives
me special pleasure to thank Andreas Blass for his numerous comments and many
clarifying enjoyable discussions.
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Global Relations and Functions 5
PART 1. FINITE MODEL THEORY

SECTION 1. GLOBAL RELATIONSAND FUNCTIONS

This section is devoted primarily to the notions of global relations and global
functions which will be used to provide semantics for numerouslogics. The
section contains anumber of definitions, two principles and one proviso that will
be widely used throughout Part 1.

The notions of global relations and global functions were introduced in (28). To
motivate the definition of aglobal relation, let us consider aformulap(x,y), with
two free individual variables, in the first-order language of graphs. What is the
meaning of p(x,y)?Isit abinary relation? Well, it isand it is not. Given a graph,
one can interpret o(x,y) asabinary relation. In general, ¢(x,y) can be interpreted as
afunction that assigns a binary relation to each graph. Such functions will be
called global relations.

Definition 1.1 Let K be a class of first-order structures of some signature
(vocabulary) . An r-ary K-global relation p assignsto each structure Sin K an r-
ary relation p® on S therdation p®isthe specialization of p to S. The signaturec is
the signature of p. If Kisthe class of all permissible o-structureswe say that pis
o-global.

Right now all structures are permissible. Later we will permit only finite
structures satisfying some additional restrictions.

Thenotion of global relations generalizes Tarski'snotion of sentential functions
(62). Sentential functions are global relations of arity zero. In a sense, the notion of
global relationsreduces to the notion of sentential functions: an r-ary global
relation of signature ¢ can be viewed as a sententia function whose signatureisan
extension of ¢ by r additional individual constants. But it ismore convenient to
work directly with global relations.

Tarski's semantics for first-order logic can be conveniently formulated in terms
of global relations (disallow function symbols for amoment). The meaning of a
first-order formula ¢ with r free individual variablesisaac-global r-ary relation
where ¢ isthe signature (vocabulary) of o, i.e., the set of predicate symbolsin o.
The meaning is defined by an obvious induction.

Remark Thereisonerdatively minor issue that we are going to ignore. Different
orderings of the freeindividud variables of afirst-order formula give different
global relations. One way to resolve this difficulty is to stick to the lexicographical
ordering of individual variables. Another possibility isto use amore explicit
notation like{ (x; . . ., X,): ©}.
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6 L ogic and the Challenge of Computer Science
Examples of global relations:

1. Let GRAPH bethe class of finite graphs seen as structures with exactly one
relation which is binary, irreflexive and symmetric. The following GRAPH-
global reationsare of arities 0, 1, and 2, respectively:
Thegraphisconnected, )

Node x has at most log n neighbors where n is the number of nodes,
Thereis a path from node x to nodey.
2. Let GROUP be the class of finite groups. The following GROUP-global
relationsare of arities 0,1, and 3, respectively:
The group isabelian, )
The index of the subgroup, generated by element x, isat most log n where
nisthe number of elements, )
The subgroup generated by elements x and y contains e ement z
Definition 1.2 Let K be aclass of structures of some signature ¢ A K-global
function f of type (Universe)’ — Universe assignsto each structure Sin K an r-ary
function f° that, given an r-tuple of elements of S, produces an element of S. The
signature ¢ isthe signature of f.

First-order terms denote global functions. In the obvious way, global relations
and global functions of types (Universe)” — Universe provide semantics for first-
order logic with function symbols. (View individual constants as zero-ary
functions.)

We will keep the notion of global functionsinformal (and very general) and will
deal only with global functions of specific types. In particular, an r-ary global
relation isa global function of type Universe — Bool where Boadl is the set of the
two truth values. A K-global function f of type (Universe)’ — (Universe)? assigns
to each Sin K afunction f° that, given ap-tuple of dementsof S, produces ag-
tuple of elementsof S; we say that f, as well as each specidization f° of f, is p-ary
and g-coary. The notion of a K-global partia function f of type (Universe)® —
(Universe)? is an obvious generalization; f itself istotal (defined on the whole K)
but its specializations may be partial. Other possible types of global function
include

[(Universe)’ — Bool] — [(Universe)*— Bool], and
[(Universe)’ x (Power-Set(Universe))] — Booal.

Thelatter isthe type of second-order formulas with p freeindividua variables
and g free predicate variables that are all monadic. The meaning of any second-
order formulaisa global function of an appropriate type.
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Global Relations and Functions 7

The Localization Principle. Think about global relations and global functions as
relations and functions (of appropriate types) on the sructure of discourse.

Thelocalization principle allows us to speak about the negation of a given global
relation, about the transitive closure of a given binary global relation, about
composition of unary global functions, etc.

Proviso. InPart1,

1. any structureis afinite first-order structure of finite signature,

2. the universe of any structureisan initia segment of natural numbers,
3. any class of structures consists of structures of the same signature, and

4. the domain of any global relation comprises all structures of some signature that
are permitted in the context, unlessthe contrary is said explicitly.

The proviso allows us to associate a decision problem with each global relation.

Ddfinition 1.3 Let p be an r-ary K-global relation. An ingtance of the decision

problem for pisapar (S x) where Shelongsto K and x is an r-tuple of

elementsof S the corresponding question iswhether p(x) holdsin S(in other
words, whether x belongs to p°).

However, we need to agree on a standard way to represent structures asinputs
for computing devices. To simplify the exposition, we choose to represent struc-
tures by means of several input tapes. Suppose that Sisa structure of cardinality n.
Oneinput tape, called the universe tape, representsthe universe {0, 1, ..., n—1}
of S itisof length n, its end-cells are specially marked but the intermediate cells
aredl blank. (Ignorethecaseof n= 1.) If Risabasic r-ary rlation of Sor the
graph of an (r - I)-ary basic function of Sthen Ris represented by a special tape of
length n"; for all dements X,, . . ., %.1, thecel number 3% ¢ n' contains 1 if
R(X;-1, . . . , Xg) holds, and O otherwise.

The Globalization Principle. View relations and functions under discussion asthe
specializations of global relations and global functions to the structure of
discourse.

The globalization principle can be applied only if the context uniquely defines
appropriate relations or functions on all relevant structures. For example, suppose
that a discussion involves the trangtive closure R of a basic relation of the
structure of discourse. Then the globalization principle allows usto speak about R
being polynomial time recognizable.
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8 L ogic and the Challenge of Computer Science

Fagin proved (20) that existential second-order logic captures nondeterministic
polynomial time.

Theorem 1.1 A global relation is definable by an existential second-order
formulaif and only if it is recognizable by a polynomial time bounded nonde-
terministic Turing machine. L]

The proof of Theorem 1.1 may be found in the third section of Borger's
contribution to this volume (Chapter 2).

It iseasy to see that every first-order definable global relation islog-space (and
therefore polynomial time) recognizable. The converseisnot true. For example,
the global relation "The cardinality of the universeis even" islog-space
recognizable but not first-order definable. Aswe will see bel ow, some natural
extensions of first-order logic express exactly |og-space (respectively polynomial
time) recognizable global relations.

Definition 1.4 Let L be first-order logic or an extension of first-order logic by
additional logical operators. (A number of such extensionswill be defined in
subsequent sections.) L + < isthe extension of L by means of alogical constant <
(just asfirst-order logic with equality is the extension of first-order logic by means
of alogica constant =). Thelogical constant < isinterpreted on each structure S
astheredtriction of the usua order of natural numbersto the universe of S

SECTION 2. TRANSITIVE CLOSURES

This section is devoted to transitive closure logics. We start our treatment of
different extensions of first-order logic with transtive closure logics because of
their relative smplicity. The use of two-way multihead automatawill allow usto
simplify the proofs related to capturing complexity classes.

Thelocalization principleimplicitly introduces the transitive closure of a given
binary global relation. The trangtive closure of afirst-order expressible binary
global relation may be not first-order expressible; see (2, 23, 29). In this con-
nection, Aho and Ullman (2) suggested extending therelational calculus, a
standard relational query language and a variant of first-order logic, by a powerful
least fixed point operator. Immerman (45) turned the trandtive closureitsdf into a
logical operator TC. He defined also a deterministic trandtive closure operator
DTC, and proved that the corresponding extensions FO+ TC + <and FO+ DTC +
< of first-order logic capture natural complexity classes. We prove here some of
Immerman’s results.
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Transitive Closures 9

Definition 1.5 If Risaréation of an even arity 2r over some universe U then the
relation { (x,y): tuples x,y belong to U', and the concatenation x*y belongsto R} is
the binary companion BC(R) of R. The transitive closure of a 2r-ary relation
relation Risthe 2r-ary relation TC(R) (over the same universe) whose binary
companion isthe transitive closure of BC(R). With respect to the localization
principle, the trangitive closure of a 2r-ary global relation p is the global relation
TC(p) such that the domain of TC(p) equalsthat of p and for each structure Sin
the domain of p, the speciaization of TC(p) to Sisthe transitive closure of p°.

It will be convenient for usin this section to play down the distinction between
relations of even arity and their binary companions.

Lemmal.l If a2r-ary global relation p is nondeterministically | og-space rec-
ognizable (i.e. if the decision problem for p is solvablein nondeterministic log-
space) then soisTC(p).

Proof Let Sbeastructureinthe domain of p, R be the specialization of pto S,
and a,b ber-tuples of dementsof S The desired algorithmis:

begin
X:=a
repesat
guessy;
if (xy) eR then x:=y
until x=b;
hat with output YES
end. m

Notice the use of the globalization principlein the exposition of the proof.

We definealogic FO + TC. The syntax of FO + TC isthe extension of the
syntax of first-order logic by:

Transitive Closure Formation Rule. Let r be a positive integer and ¢(x,y) be a
well-formed formula where x and y arer-tuples of individual variables such that
the 2r variables are distinct. Then TC, yp(X,y) isawell-formed predicate, and if st
arer-tuples of well-formed terms then [TC, yp(x,y)](st) is awell-formed formula.

TC, bindsthe 2r individual variables in the new predicate (but the additional
occurrences of these variables in thetail of aformula[TC, o(x.y)](x,y) arefree).
o(Xy) may have additiona freeindividual variables. A more explicit
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10 L ogic and the Challenge of Computer Science

notation for the new predicateis TQy,y o(W,X,y) wherewisthelist of those
additional variables. The new formula[TC, yp(w,x,y)](st) means (on each relevant
structure) that (s, t) belongsto the trangtive closure of therdation R, = {(x.y):
o(w,x,y)}. Theglobal function semantics for first-order logic naturally extendsto
logic FO + TC; again the meaning of aformulawith r free individual variablesisa
global r-ary relation.

Thetransitive closure formation ruleintroduces well-formed predicatesin
addition to well-formed formulas. The only well-formed predicates in first-order
logic are predicate symbols. The transitive closure formation ruleis essentiadly a
predicate formation rule. The new predicateis then used to form new formulas.
But it ispossible to deal only with formulas of course.

Remark Immerman (45) seemsto define directly a new formula TC[p(X,y)]
which isasimpler notation for [TC, ,p(X.y)](Xy). Unfortunately, the simpler
notation is somewhat deficient. Try to express [TC, ,P(x,y,X)] (X,X) or
[TCxyP(X.y.X)](fx,X) in the simplified notation.

Positive and negative occurrences of a predicatein aformula are defined by
induction. In particular, every positive (respectively negative) occurrence of a
predicatein aformulag remainssoin any formula[TC... 9](. . .). Say thata
formula g is podtive with respect to TC if every occurrence of every predicate
TC...y ing ispositive.

In Section 1, we spoke about extensions L + < of logics L by means of the built-
inlinear order. In particular, we have an extenson FO+ TC+ < of FO+TC.
Viewing O and 1 aslogica constantsyields a further extenson FO+TC+<+
{0, 1}.

Theorem 1.2 Let p beaglobal relation. The following are equivalent:
1. p isnondeterministic |og-space recognizable,

2. p isdefinable by an FO + TC + < formula ¢ which is positive with respect to
TC.

3.pisdefinableby aFO + TC + <+ {0,1} formula[TC,,w(X.y)l(st) wherest are
sequences of zeros and ones, and v is first-order.

Proof (3) — (2). Theconstants0and 1 are definablein FO + <.

(2) — (2). Without loss of generality, one may suppose that only first-order
subformulas can be negated in the defining formula ¢: use the usual duality laws
for first-order logic. Then an easy induction shows that every subformula of the
defining formulais nondeterministically log-space recognizable. The caseof TC
istaken care of in Lemma1.1.
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Transitive Closures 11

To provetheimplication (1) — (3), suppose that p isrecognizable in non-
determinigtic log-space. According to the Appendix, there isanondeterministic
two-way multihead automaton that recognizes p. Let formula Next(w,x,y) and
tuples Initid, Final be asin the Appendix. Then thedesired FO + TC + <+ {0, 1}
formulais

[TCxy Next(w,x,y)](Initial ,Final) |

Definition 1.6 The deterministic version of abinary relation Ristherelation
{(xy): (xy)eRand thereisno z# y with (x,2)eR}. The deterministic version of a
2r-ary relation Risthe 2r-ary relation whose binary companion isthe
determinigtic version of BC(R). The determinigtic transitive closure DTC(R) of a
2r-ary relation Risthe transitive closure of the deterministic version of R. With
respect to thelocalization principle, the deterministic transitive closure of a 2r-ary
global relation p isthe global relation DTC(p) such that the domain of DTC(p)
equalsthat of p and for each structure Sin the domain of p, the specialization of
DTC(p) to Sisthe deterministic transitive closure of p®.

Lemmal.2 If a2r-ary global relation p islog-space recognizablethen sois
DTC(p).

Proof Let Srange over thedomain of p, U bethe universe of the dructure S
R=p° andab ber-tuples of dementsof U. We need an algorithm which, given
Sand (a,b), will decide whether (a,b) belongsto DTC(R).

The deterministic version of Risthe graph of some partia function f on U'.
Given xin U', one can find in |og-space whether thereis somey with (x,y)eR
and whether there are different y,zwith (x,y)eR and (x,2eR .Thisyields a
|og-space algorithm which, given x, computes fx or UNDEFINED. Given a and
b, computef “a for k = 1, 2, etc. and halt when b comes along or UNDEFINED
isreturned or k reaches n. If b has come dong then return YES, otherwise return
NO. ]

Again, the globalization principle was used to simplify the exposition of the
proof.

The definition of an extension FO + DTC of first-order logic is Smilar to the
definition of FO + TC. Just change 'TC" to "DTC," and "transitive closure" to
"determinigtic trandtive closure.”

Theorem 1.3 Let p beaglobal relation. The following are equivalent:
1. p islog-space recognizable,
2. pisdefinablein FO + DTC + <,
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12 Logic and the Challenge of Computer Science

3. pisdefinableby aFO + DTC + <+ {0,1} formula[DTC,, w(x,y)](st) wheres;t
are sequences of zeros and ones, and v isfirst-order.

Proof Similar to that of Theorem 1.2. ]

Since the deterministic version of a given relation isfirst-order definable, FO +
DTC can be seen asasublogic of FO + TC.

SECTION 3. LEAST FIXED POINTS

In this section we define the extension FO + LFP of first-order logic by the least
fixed point operator (2, 12) and prove Immerman and Vardi's theorem that FO +
LFP + < captures polynomial time (44, 68). Again, the use of two-way multihead
automata will allow certain simplification.

Ddfinition 1.7 Let F be aunary operation on apartially ordered set. If Fx = x then x

isafixed point of F. If Fx = xand Vy(Fy = y — x <) then x is the least fixed
point LFP(F) of F. If Fx < Fy for all x <y then F is monotone.

Ddfinition 1.8 A partially ordered set iscomplete if every subset of it hasaleast
upper bound and a greatest lower bound.

For example, the set of relations of a fixed arity on a fixed nonempty set isa
complete partially ordered set with respect to incluson. Thefollowing fact iswell-
known.

Fact Let D beafinite (or infinite complete) partially ordered set with aleast
element. A monotone unary operation F on D hasaleast fixed point.

Proof Let g0=min(D) and each g(a +1) = F(goy). (In the case of infinite
D), let additionally go = sup{gp: (B < o} for limit a.) By monotonicity, the
function g isincreasing (though not necessarily strictly increasing). Hence, there
isawith go. = g(a + 1); let y = min{a: go = g(a + 1)}. Obvioudly, gy isa
fixed point of F. Given afixed point y of F, prove by induction that each ga. <.
Hence gy = LFP(F). [

Thelocalization principle gives:
Definition 1.9 Let F be ac-global function of type

[Power-Set(Universe’)] — [Power-Set(Universe)]

so that each specification of F takes an r-ary relation to an r-ary relation. Fis
monotoneif every specialization of F is so. If F is monotone then the least fixed
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Least Fixed Points 13

point LFP(F) of F isthe c-global r-ary relation that assignsto each a-structure S
the least fixed point of F°. F is polynomial time computableif thereisa
polynomial time algorithm that, given a c-sructure Sand an r-ary relation P on S
computes FS(P).

Lemmal.3 Let F be amonotone s-global function of type
[Power-Set(Universe)] — [Power-Set(Universe)].
If F ispolynomial time computable then LFP(F) is polynomial time recognizable.

Proof Given astructure Sand an r-tuple x of elementsof S, compute P, = @

pr = F3(Po), P, = FS(Py), etc. until you come across P, + | = Py, Then check
whether x belongsto Py,,. Sincem< |9, this algorithm works in polynomial

time. ]

The syntax of logic FO + LFP istheresult of augmenting the syntax of first-
order logic by the following formation rule. (If al predicate symbols of first-order
logic are treaeted as predicate constants then first-order logic should be augmented
by predicate variables first.)

Least Fixed Point Formation Rule. Let r be a positive integer, x be an r-tuple

X1, - -+, % Of individual variables, P be an r-ary predicate variable, and (P, x) be
awell-formed formula. If (P,X) is positivein P (i.e. al free occurrences of P in
o(P,x) are positive) then LFPs.  ¢(P,X) isawell-formed predicate and, for every r-
tuplet of well-formed terms, [LFPs. x o(P,X)](t) isawell-formed formula

LFPs. «x binds the predicate variable P and theindividual variablesxy, . . ., X (but
of course additional occurrences of these individual variables in thetails of
formulas [LFPe. x o(P,X)](t) arefree). If Q isa predicate variable different from P
then every positive (respectively, negative) occurrence of Q in ¢(P,X) remains
positive (respectively, negative) in the new predicate and the new formulas.

Remark A smplified notation LFP-p(P,X) for [LFPe.xp(P,X)](X) is deficient: just
try to express [LFPq. xo(P,X)](t) in the simplified notation.

To be on the safe side, et us emphasize that logic FO + LFP allows interleaving
LFP with propositional connectives (including negation) and quantifiers; in
particular, one can negate an LFP formula then use the LFP formation rule again,
€etc.
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Theformula ¢(P,X) may have additiona free individual variables; et wbethe
list of the additional individual variables. Themeaning of the predicate
LFPe. x(P,w,X) isthe least fixed point of the operator F(P) = {x: ¢(P,w,x)} on
the set of r-ary relations ordered by incluson. Since the formula ¢(P,w,X) is
positive in P, the operator F,, is monotone and therefore hasaleast fixed point.
The global function semantics for first-order logic naturally extendsto FO + LFP.

Theorem 1.4 Let p beaglobal relation. The following are equivalent:
1. p ispolynomial time recognizable,
2. pisdefinableinlogic FO + LFP + <,

3. pisdefinableby aFO + LFP + <+ {0,1} formula [LFPep(P,X)](t) where v is
first-order and t a sequence of zeros and ones.

Proof Theimplications (3) — (2) and (2) — (1) are obvious. To prove theim-
plication (1) — (3), suppose that p ispolynomia time recognizable. According to
the Appendix, there is an aternating two-way multihead finite automaton that
recognizes p. Let the formula Next(w,x,y) and the tuples Initial, Final be asin the
Appendix. It iseasy to write down first-order formulas Existential (x) and
Universal (x) asserting that the internal state of the automaton in the given con-
figuration x isrespectively existential or universal. Let

Accepted(w,_) = LFPp[x = Find, or

Universal (X) & Yy(Next(w,x,y) — P(y)), or

Existential (x) & JyNext(w,x,y) & P(y))].
Thedesired FO + LFP formulais Accepted(w, Initial). ]

SECTION 4. BRANCHING QUANTIFIERS

We turn now to an extension of first-order logic by branching (or Henkin)
quantifiers whose introduction was motivated by considerations quite distant from
computer science (42).

Let us start with an example. The expression

[‘;’,;‘3;]¢{u,v,x,y) (L.1)

meansthat for all u and x there are v and y such that v depends only on u, y
depends only on x, and o(u,,v, X,y) holds. In other words, there are functions V(u)
and Y(x) such that ¢(u,V(u),x,Y(x)) holds.
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Branching Quantifiers 15

In general, abranching quantifier isa partially ordered set of expressions ¥x and
Jy; an existentially quantified variable y depends upon the universally quantified
variables x such that ¥x precedes Jy in the partia order (69).

Theorem 1.5 For any global relation p the following are equival ent:
1. pisNP,
2. pisexpressible by an existential second-order formula,

3. p isexpressible by aformula Qp where Q isa branching quantifier and g isa
first-order formula.

Proof Theequivalence (1) < (2) isTheorem 1.1in 81, theimplication (3) —
(2) isobvious, theimplication (2) — (3) isproved in (69). |

In the rest of the section we describe a few results from (8). The only novelty is
the direct proof of Theorem 1.8 below. A branching quantifier Q will be called
mighty if thereisafirst-order formula g such that the global relation Qo isNP-
complete under polynomial time reductions.

Theorem 1.6  The quantifier (1.1) ismighty.

Proof Theideaisto express 3-colorability of a graph with individual constants O,
1, and 2. The desired ¢ isthe conjunction of the formulas:

Uu=x — v=y,
v=0orv=1orv=2
Edge(u,X) — V£ Y. L]

Note that, in the proof of Theorem 1.6, the existentialy quantified variables
range, in effect, over {0,1,2}. Let a, B, y range over {0,1}, and pn range over
{0,1,2}.

Theorem 1.7 The quantifiers

:j gg and [:x ga] are mighty.
Yz Jy yan

We omit the proof of Theorem 1.7.
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In therest of this section, x and y aretuples of individual variables. The
branching quantifier
Yx Ja
Yy 3B

will be called the narrow Henkin quantifiers and denoted NH(x,q; y, ). Without
loss of generality, x and y aways have the same length: just pad the shorter tuple.
Let ENH(x,; y,B) be the equality bound version of NH(x,a; y,pB):

NH(x0; y,B)[(x=y— a=p) & o(x Y, o, B)].

ENH(x,0; y,B) asserts (in each relevant structure) the existence of a function f from
the universeto {0, 1} such that for dl x and y, p(x,y,f(x),f(y)) holds. In therest of
this section, we assume that o and [ range over the truth-values rather than over
{0,1}. Then ENH(x,a; y,B)o(X, y, a, B) isequivalent to the second-order formula

ARVXyp(Xy,R(X),R(Y))-
An arbitrary NH(x,a; y,B)o(x, y, o, B) isequivalent to
ENH(xu,o; yv,p)[(u=0 & v=1) — o(x Y, a, B)].

Let FO + NH be the extension of first-order logic by narrow Henkin quantifiers.
Positive and negative occurrences of a subformulay in aformula ¢ are defined by
the obvious induction on ¢; in particular, any positive (respectively negative)
occurrence of v in ¢(u, v, v, ) remains so in NH(x,o; y,B)o(X, y, o, B). Wewill
say that aformula g is positive with respect to NH if every occurrence of every
subformula of the form NH(x,a; y,p)w(X, ¥, o, B) in ¢ is positive. Abbreviate
"nondeterministic log-space” as "Nlog-space.”

Theorem 1.8  For aglobal relation p thefollowing are equiva ent:
1. p is co-Nlog-space recognizabl e,

2. pisexpressible by an FO + NH + < formulawhich is positive with respect to
NH,

3. pisexpressible by an FO + NH + < formula ENH(x,a; y,p)o(x, y, o, B) witha
first-order o.

Proof (1) — (3). Suppose that p isco-Nlog-space recognizable, and let p' be the
complement of p (so that on each relevant structure, the specification of p' isthe
complement of the specification of p). According to the Appendix, thereisatwo-
way multihead nondeterministic finite automaton that recognizesp . Let formula
Next(w,x,y) and tuples Initial and Final be asin the Appendix. The desired formula
expresses the nonacceptance by the automaton:
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ENH(x,o; y,p)[(x = Initiadl - a=1) &
((a=1& Next(wxy)) — p=1) &
(y= Find — p=0)].

Branching Quantifiers
Theimplication (3) — (2) istrivid.

(2) — (). Without loss of generality, we may suppose that only first-order
subformulas of the defining formula can be negated: use the usual dudity laws of
first-order logic. By induction, we will prove that every subformula of the defining
formulais co-Nlog-space recognizable. It sufficesto prove that if (X, y, a, B) is
co-Nlog-space then soisy = ENH(x,c; y,B)o(X, Y, o, B). Thus, supposethat M'isa
|og-space bounded nondeterministic Turing machine that recognizes the negation
0'(X, Y, o, B) of (X, y, o, B). Wehave

y < AR VXYY (X,y,RX,Ry) <= IR VXVy not ¢'(X,y,Rx,Ry) <~
HRHX’y not th'(x,y, o, B) (RX = (1) & Ry = B) >

ARy x,y, o, py(RX # @) & Ry # P).

HereIl,, means (in each relevant structure) the conjunction over all values of x
and y. For given values of x andy, Y ¢ y, o, py MeaNs the digunction over the values
of a and B satisfying ¢'(x,y,Rx,Ry). AndIL,« y, gy Means the conjunction over all
values of x, y, a.and P satisfying ¢'(x,y,Rx,Ry). For every value a of x, view Ra as
apropositional variable. Then y asserts satisfiability of the propositional formula
Iy« v, o, p(RX # ) OF Ry # B). Recall that aliteral isapropositional variable or the
negation of such.

Fact (49) A conjunction C of binary digunctions of literasisunsatisfiable if and
only if there are apropositional variablep and asequencel; — I, — ... — 1 —
I, of literals such that each implication I; — l;, aswell astheimplication |, — |,
is equivalent to a conjunct of C, and both p and the negation of p appear in the
sequence.

Now we are ready to describe a log-space bounded nondeterministic Turing
machine N that recognizes the negation of y. Let M be alog-space bounded
nondeterministic Turing machine that recognizes ¢'. Step-by-step N guesses a
sequencel; — I, — ... — |y — |y of literals that witnesses the unsatisfiability of
C =y ,y,a p(RX# a) or Ry # P). Tocheck that animplication |y — li;; (where
i+1=1if i=m) is equivalent to aconjunct of C, N presentsl;, intheform
Ra = o, presents|;.; in the form Rb # B, and uses M to check ¢'(a, b, a, f). [
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SECTION 5. FUNCTION LOGICS

First-order logic is essentially alogic of relations. It has one function construct:
the compoasition, and a number of relation constructs. boolean connectives and the
two quantifiers. It allows constructing formulas from terms but not the other way
round. In Sections 2-4 we studied extensions of first-order logic by means of
additional relation constructs. In this section, we turn to logic of functionsin the
case when only finite sructures are permitted.

Condder the classical language of functions primitive recursive rel ative some
given functions (47). Usually, primitive recursive terms are interpreted over the set
of natural numbers. But here we interpret primitive recursive terms as functions
over anonempty finiteinitial segment of natural numbers. View the individua
constant 0 as a name of the number zero, view the sign of successor function asa
name of the partial successor function on the universe of discourse, and so on.
Then every primitive recursive term meansa global function. We take the liberty
of extending the syntax by anew individual constant End for the last el ement of
the universe of discourse. It turns out then that aglobal function is primitive
recursveif and only if it islog-space computable (28). Smilarly, aglobal function
isrecursiveif and only if it is polynomial time computable (28, 57). This section
recapitulates some of the paper (28). It has also a couple of hew elements: a
remark that primitive recursion can be replaced by a WHILE construct, and a
simpler universal recursive schema

We start with primitive recursive global functions. The language of primitive
recursve functions will be reformulated in aform that is convenient for our
purposes. In the same time we will extend the language by the individual constant
End.

According to the proviso of Section 1, the universe of every structureisan initial
segment of natural numbers. In this section, we have three additional provisos:

1. Every structure contains at least two elements. (Alternatively, one may assume
existence of an extrauniverse Bool = {False, True}.)

2. Individual constants 0, End and a unary function symbol Successor are logica
constants (as equality isalogical constant in first-order logic with equality). In
every structure, 0 denotes the number zero, End denotes the maximal number in
the universe, and Successor denotes the partial function ix(x +1). The threelogical
constantswill not be counted as members of any signature.

3. A certain (possibly empty) signature ¢ isfixed. Every structureis a o-structure.
Every global function isc-global.

In this section, afunction (resp. global function) meansapartia function (resp.
partial global function) of type Universe® -» Universe” for some none-
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gative integer p (the arity) and some positive integer g (the coarity). A function of
coarity q > 1 can be seen as a sequence of g functions of coarity 1, but it will be
convenient to deal directly with functions of higher coarity. If ty, . . ., ty aretuples
of elementsthen (ty, . . ., t) will denote the concatenation of tuplesty, . . ., tg
rather than a k-tuple of tuples.

With respect to the localization principle, we view global functions as functions on
the structure Sof discourse. Let U ={0, ..., n—1} betheuniverseof S The
value of a nonempty tuple (Xei, ..., X1, Xo) Of elementsof U isthe number
i Xien'.  If dements of U are seen as digits over the radix n then any nonempty
tuple of elements of U isapositiona notation over theradix n for its value.

Ddfinition 1.10 Theinitial functionsare;
1. For every nonnegative p, the constant p-ary functions with values 0 or End.

2. For every positive p, the p-ary p-coary successor function. Given a p-tuple of
value V < nP-1, the function produces the p-tuple of value V + 1; it isnot defined
on the p-tuple of value n® - 1. We will denote the successor of atuplet ast + 1.

3. Fordlp>g>1landevery sequence1<i; < i,< ... < ig< iy the
corresponding p-ary g-coary projection function. For example, if p=4,9=2and
i1 = 2,i,-4thenthe projection of (0,1,2,3) is(1,3).

4. The basic -functions, and the characteristic functions of basic ¢-predicates.
(Individua congtants are functions of arity 0 and coarity 1.)

The composition g(hy(X), . . ., (X)) of functionsgand hy, . . ., hyisdefinedin
the obvious way. It isrequired that arity(h,) = . . . = arity(hy) and arity(g) =
coarity(hy) + . . . + coarity(hy).

Asusual, the primitive recursion schemaisthe schema
f(x, Zero) = g(x), f(x,t+1) = h(xt, f(x, 1)) (1.2

which defines anew function f by means of given functionsg and h of the same
coarity. Here Zero is the tuple of zeros of the appropriate length.

Ddfinition 1.11 A global function is primitive recursive if it belongs to the closure
of initial global functions under compositions and primitive recursions. A global
relation is primitive recursiveif its characteristic function is so.

Example Let us check that if a 2-coary function f(x) and a 3-coary function g(x)
are primitive recursive then the 5-coary function h(x) = (f(x), g(x)) is primitive
recursve. The 5-ary 5-coary identity function I(y) = y is primitive recursive
becauseitisaninitia projection function. But h(x) = I(f(x), g(x)).
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Theorem 1.9 A global function f is primitive recursive if and only if it islog-space
computable.

We skip the proof of Theorem 1.9, see (28).

The language of primitive recursive functions can be viewed as a programming
language such that exactly log-space computable global functions can be pro-
grammed. Programming languages of that sort may be useful in applications
where the complexity of computationsis bounded a priori. In this connection, let
us mention that the primitive recursion schema can be replaced by more familiar
programming constructs. Consider, for example, the construct

y:=e; FORs:=g TOe DOy:=e; (1.3

where e, €, &, €; are expressions (terms) and &, e, & contain neither snor y. If
the expressions g define primitive recursive global functionsthen (1.3) defines a
primitive recursive global functiony = f(...). The primitive recursion schema
(1.2) isexpressible by means of (1.3):

y:=90(X); FORs:=ZeroTO t-1 DO y: =h(x, s V).
Another possible replacement for (1.2) isthe construct
y:=ey WHILE gRe, DOy :=¢e; (1.4)

where e, €, &, €; areexpressions, and e, €;, & do not contain y, and Risa
relation =, < or <. (It would be desirable of course to introduce boolean
expressions and to alow an arbitrary boolean expression b instead of gRe,.) If
the expressions g define primitive recursive global functionsthen (1.4) defines a
primitive recursive global functiony = f(. . .). (1.2) is expressible by means of
(1.4) and a projection:

(s'y) :=(Zero, g(X)); WHILEs<tDO (s,y) :=(s+ I, h(x,sy)).

Consder now the classical Herbrand-Gddel-K|eene equation language of re-
cursive functions (47) extended by the individua congant End. Therecursive
definitions are naturally adaptable to global functions; it turns out that a global
function isrecursiveiff it is polynomial time computable. Moreover, recursive
functions form the closure of primitive recursve functions under a single ad-
ditiona recursion schema Two schemas are specified for this purposein (28).
Hereisasimpler recursion schema for the same purpose:

f(x, Zero) = gx, f(x,t+ 1) = h(x,f(axt), f(Bx.t)) (1.5

which defines a new function f by means of given functionsg, h, a. and p.

Theorem 1.10 A global function is polynomial time computable if and only if it
bel ongs to the closure of initia primitive recursive global functions by means of
composition and recurson schemas (1.2), (1.5).
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Proof The"if" implication is clear. To prove the"only if* implication, |et
RECFUN be the closure of initial primitive recursive global functions by means of
composition and recursion schemas (1.2), (1.5), and let RECREL be the class of
global relations with characteristic functionsin RECFUN. Thelocalization
principle allows us to speak about the graph of a global function. It sufficesto
prove that an arbitrary polynomia time recognizable global relation p belongsto
RECREL because a polynomial time computable global function can be recovered
from its graph by primitive recursive means. According to the Appendix, thereis
an alternating two-way multihead automaton that recognizes p; it accepts a
structure Swith atuple w of an appropriate length if and only if p(w) holdsin S
Let tuples Initial and Final be asin the Appendix.

Without loss of generdity, every configuration of the automaton has at most two
next configurations. There are primitive recursive functions o and B such that if y
codes a configuration then a(w, y) and B(w, y) code the next configurations; if
thereis only one next configuration then a(x, y) = B(w, y). Without loss of
generdity, every internal state of A is either existentia or universal; the
determinigtic states (with only one next configuration) can be counted either way.
We say that a configuration is existential (respectively universal) if the
corresponding internal stateis so. Thereisa primitive recursive function E such
that if y codes an exigtential (respectively universal) configuration then Ey
equals O (respectively 1). Schema (1.5) allows usto define an auxiliary function
Accept(w, v, t):

Accept(w, y, Zero) = If y = Final then 1 else 0,

Accept(w, y, t+l) = If Ey = 0 then max{ Accept(c(w, y), t),
Accept(B(w, y), t} ese min{ Accept(a(w, y), 1),
Accept(B(w, y), t}.

Notice that p(w) < 3 t [Accept(w,Initid, t) = 1].

Heretisatuple(ty, ..., t) of afixedlengthr, and It means 3 t;. .. A t;..
But RECREL is closed under the existential quantification over the elements.
Hencep isin RECREL. ]

SECTION 6. INDUCTIVE FIXED POINTS

The LFP formation rule of Section 3 had one ad hoc feature. To ensure that the
operator F(P) = {x: ¢(P, X)} is monotone, the formula (P, X) was supposed to be
positivein P.  The positivity of ¢ is sufficient but not necessary for the
monotonicity of F.  Unfortunately, replacing the positivity condition by the
monotonicity condition resultsin an extension FO + LFP of first-order logic that
we would not like to cdl alogic: the set of FO + LFP formulas is undecidable
(29). Fortunately, thereis a better fixed-point extension of first-order logic,
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called the inductive fixed-point extension FO + |FP, which is even moreliberal
than FO + LFP. It wasintroduced in (29) as a development of an idea of Livchak
(52). This section recapitulates the papers (37) and (38) where the inductive fixed-
point logic was studied.

Definition 1.12 Let F be aunary operation on a (finite) complete partially ordered
st D. Let g0=min(D) and each g(i + 1) = F(gi). Fisinductiveif gi < g(i+ 1) for
everyi. Itiseasy to seethat if F isinductive then it has a unique fixed point of the
form gi; thisfixed point will be called theinductive fixed point IFP(F) of F. Fis
inflationary if X < F(X) for every XeD.

Lemmal.4 LetF beaunary operation on acomplete partialy ordered set.

(@) If Fisinflationary then it isinductive.

(b) The operation F'(X) = sup{ X, F(X)} isinflationary; if F isinductive then
IFP(F'") = IFP(F).

(c) If Fismonotonethen it isinductive and LFP(F) = IFP(F).

Proof isclear. |
Examples Consider the power set of U ={0,1,2} ordered by inclusion.

1. Define FX = XU {the cardindlity of X} if X# U, and FU =U. ThenF is
inflationary but not monotone. Moreover, F does not have aleast fixed point: both
{1} and {0, 2} arefixed pointsof f but F@ # @.

2. Define G = F except G{1} = @. Then G isinductive but neither inflationary nor
monotone.

3. The constant operations HX = {0} is monotone but not inflationary.

The syntax of logic FO + IFP isthe extension of the syntax of first-order logic
by:

The Inductive Fixed Point Formation Rule.  Let r be apositive integer, x be an
r-tuplexy, . .., % of individual variables, P be an r-ary predicate variable, o(P, X)
be awell-formed formula, and ¢'(P,X) = [P(X) or ¢(P,X)]. Then IFP-,0'(P,x) isa
well-formed predicate and [I FP-.x9'(P,X)](X) isawdl-formed formula

The meaning of the predicate |FPq.,¢'(P,X) istheinductive fixed point of the
inflationary operator F(P) = {x: ¢'(P,X) }. The global function semantics for first-
order logic naturally extends to FO + | FP.

The statement (c) of Lemma 1.4 impliesthat FO + IFPisat least as expressive as
logic FO + LFP mentioned above.
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Theorem1.11 Thelogics FO + LFP and FO + | FP have the same expressive
power.

Codlary A global rdation isexpressiblein FO + IFP + <if and only if it is
polynomial time recognizable.

Proof Use Theorem 1.4 of Section 3. ]

Theorem 1.11 is a consequence of a stronger theorem. Let r be an arbitrary
positive integer, and let I range over monotone global functions of the empty
signature and of type

Power-set(Universe) x Power-set(Universd) x Universe — Booal.
The monotonicity of I meansthat (on every finite structure) I'(P;,P,, X) implies

['(Ps,P4, X) if P, € P;and P, € P,. Weare interested in the inflationary operator
G(P) = {x: P(x) or I'(P, not P, X)}.

Define an extension FO + T of first-order logic by means of the following
formation rule: if x isan r-tuple of individual variables and ¢(x), y(x) are well-
formed formulasthen soisT'({x: p(X)}, {x: w(X)}, X). The global function se-
mantics for the extended logicis clear. Treat I as a positive operator: every
positive (respectively negative) occurrence of a predicate symbol in p(x)or y(x)
remainssoin C({x: (X}, {x w(X)}, X). If an FO +IT" formulay(Q, y) is positivein

a predicate symbol Q then the operator y(Q) ={y: w(Q, y)} is monotone; if

 isrepetitive (i.e. , if the length of the sequencey of individual variables equals
the arity of Q) then it hasaleast fixed point.

We say that ardation Aisadiagonal of areation Bif Aisabtained from B by
identifying some arguments. For example, if B is given by some formula
B(v1, Vo, V3, V) and Ais given by the formula a(vy, Vo) = B(vi, Vo, Vi, Vo) then Aisa
diagond of B.

Theorem 1.12 Thereisan FO + T formulay(Q, y) such that v is positivein Q, the

operator y (Q) ={y: w(Q, y)} isrepetitive, and the inductive fixed point of the
operator G(P) = {x: P(x) or I'(P, not P, X)} isadiagonal of the least fixed point of

.

To deduce Theorem 1.11 from Theorem 1.12, prove by induction on FO + IFP
formula that ¢ isequivalent to (i.e., defines the same global relation as) some FO
+ LFP formula The only nontrivial caseiswhen ¢ = [IFPs. «(P(X) or ®(P(X))](x).
Let I'(P,P', x) betheresult of replacing dl negative occurrences of P in ® by a
new predicate symbol P'. Then I" ismonotonein both relational variables, and
O(P(x) iseguivalent toI'(P, not P, X). Now use Theorem 1.12.
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Theorem 1.13 For every FO + IFP definable global relation p thereisafirg-order
formula (P, X) such that the operator ¢(P) = {x: P(X) or (P, X)} isrepetitive and

(a) if the arity of p is positive then p isa diagond of IFP((),

(b) if p isO-ary then the unary global relation p' such that Vv(p'(v) <> p) isa
diagonal of IFP(}).

Theorems 1.12 and 1.13 imply the analog of Theorem 1.13 for FO + LFP
announced in (44).

Jiazhen Cai, a student of Bob Paige in New Y ork University, questioned the proof
of Theorem 1.13 (more exactly, the proof of Lemma 2 in 84 of (38). The following
claim removes the difficulty in the proof and isinteresting al by itsdlf.

Clam Let o(P, X, y) = [P(X) or ¢o(P, X, y)] bean FO + IFP formulawherex and y
aretuples of individual variables such that the length of x equalsthe arity of P.
Suppose that y-variables do not have bound occurrencesin . Let Q be anew
predicate variable whose arity alows to form a formula Q(x,y), and let w(Q, X, y) is
theresult of replacing each P(u) by Q(u,y) in ¢(P, X, y). Then

[IFPesx 0 (P, X, )] (X) <> [1FPq xy W(Q, X, V)] (xy)
Proof For eachy, let

Po(y) = @, Pu(y) = {x: 9(Po, X, )}, Pa(y) ={ x: 0(P, X, Y)},...
be the approximationsto IFPs o(P, X, y), and let
QO = @, Ql = {(X,y): (p(Q01 X, y)}, QZ = {(X,y): (p(Qla X, Y)}, -

be the approximationsto IFPq. x ¢(Q, X, y). (Here (x,y) isthe concatenation of
tuples rather than apair of tuples.) It sufficesto check that each Pi(y) = {x
Qi(X, ¥)}. Thecasei =0istrivial. Further,

x belongs to Pi+1(y) <> @(Pi(y), X, y) <> (by theinduction hypothesis)
(P({ X Qi(Xiy)}i X,y) A \U(Qii X, y) A (X,y) bdongs to Qi+1- u
To formulate asimilar clam for FO + LFP, replace the assumption that
(P, X, y¥) = [P(X) or po(P, X, y)] by the assumption that ¢(P, X, y) ispositivein P.
Remark Theorem 1.13 can be strengthened further: ¢ can betakento be a
boolean combination of existentia first-order formulas (11).

Remark Thewell-known zero-one law for firgt-order logic extendsto inductive
fixed-point logic (10).
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SECTION 7. INVARIANT GLOBAL RELATIONS

We saw above that in the case of structures with built-in linear order there arenice
logics which capture polynomial time. In this section we discuss the problem of
capturing polynomial timein the genera case. The problem was posed (in dightly
different terms) in (12b) and discussed in (29).

Ddfinition 1.13 Anr-ary global relation p of some signature ¢ isabstract if for
every isomorphism f from ac-structure Sonto a c-structure T and all el ements
X,...,% of §

Py %) = (X, ).

A logic capturing polynomial timeis supposed to express exactly polynomial
time computable abstract global relations.*

Remark Some polynomial time complete abstract properties are expressiblein
FO + LFP (45). But the abstract property that the universe isof even cardindity is
not expressiblein FO + LFP (12b). In virtue of Theorem 1.11 in Section 6, that
abstract property is not expressiblein FO + IFP.

We do not believe that there is areasonable logic that captures polynomial time.
To express our feding in the form of aformal conjecture, we adapt the notion of
logical systems (18) to our purpose.

Ddfinition 1.14 A logic L isapair (SEN, SAT) satisfying the following re-
quirements. SEN isafunction that associates with every finite signaturec a
recursive set SEN(c) whose elements are called L-sentences of signature . SAT
isafunction that associates with every finite signature ¢ arecursive subset SAT(c)
of {(S ¢): Sisafinite first-order o-structure and ¢ is an L-sentence of signature
o} such that if structures Sand S are isomorphic and (S, ¢) belongsto SAT(c)
then (S, ¢) belongsto SAT(c) aswell. If (S ¢) belongsto some SAT(c), we say
that Ssatisfies ¢.

Definition 1.15 If L isalogic and ¢ isan L-sentence of some signature c, then
MOD(o) be the set of ¢-structures satisfying o.

Ddfinition 1.16 A logic L captures polynomid timeif:

1. For every L-sentence o, the class MOD(o) is polynomial time recognizable;
moreover, for every ¢ thereisaTuring machine M that, given an L-sentence

A logic capturing partial (not necessarily defined on all structures of the appropriate signature)
recursive abstract global relations was designed in (12a).
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¢ of signature o, produces a polynomia time bounded Turing machine M(p) that
recognizes MOD(9).

2. For every polynomial time recognizable class K of structures of some signature
o, if Kisclosed under isomorphisms then thereisan L-sentence ¢ of signature o
such that MOD(op) = K.

Remark In thissection, a polynomial time bounded Turing machine can be
viewed asapair (T,p) where T isa Turing machine and p is a polynomial with
integer coefficients; (T,p) acceptsan input wof T if T accepts w within p(Jw)
steps.

Conjecture  Thereisno logic that captures polynomial time.

Our adaptation of the notion of logicsin (18) includes some alterations. In
particular, we consider only finite signatures and finite structures, and require the
recursvity of sets SEN(c) and SAT(c). Let Rl and R2 be the two recursivity
requirements, respectively.

Clam1 Waiving therecursivity requirementsin Definition 1.14 falsifies the
conjecture.

Proof Call aTuring machine M c-appropriateif (a) it is able to take o-structures
asinputs, and (b) the class{S Sisac-gructureand M accepts S} is closed

under isomorphisms. Define L = (SEN, SAT) where each SEN(c) consists of

al c-appropriate Turing machines, and each SAT(c) consists of all pairs (S M)
such that Sisac-structure and M is a c-appropriate Turing machine that accepts
S Itiseasy to seethat L isalogicin theliberaized sense and L captures
polynomial time. m

We could omit the second recursivity requirement R2 in Definition 1.14 because
it follows from the condition of capturing polynomial time, but we consider it
necessary in general and it complements Rl in the following sense (7). Suppose
that L = (SEN, SAT) satisfies the requirements of Definition 1.14 except for R
and R2, and suppose that the sets SEN(c) are countable. Fix one-to-one mappings
fs from SEN(c) onto the set of natural numbers and rename every ¢-sentence ¢ as
the number f4(p). Theresulting system is Smilar to L and satisfies RI.

The definition of logics may be justifiably tightened in many ways. One may
require that every embedding f: ¢ — ¢, taking any predicate (respectively func-
tion) symbol to a predicate (respectively function) symbol of the same or greater
arity, givesriseto arecursive embedding of SEN(c) to SEN(c "); that the functions
SEN and SAT themselves are recursive (when signatures are presented by
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codes if necessary); that the signature of a sentence is computable from the
sentence; that all recursivity conditions are replaced by corresponding polynomial
time conditions; etc. Similarly, the notion of capturing polynomial time can be
justifiably tightened in many ways. For example, one may require that the
existence of a polynomial time bounded Turing machines M that, given (the code
of) an arbitrary sentence @, produces a Turing machinerecognizing ¢. We have
chosen our definitionstaking into account the negative character of the conjecture.
Notice however the necessity of the requirement of the existence of machinesM in
clause (a) of Definition 1.16.

Clam?2 Waiving the requirement of the existence of machines M in Definition
1.16 falsifies the conjecture.

Proof (7) Let SEN(c) comprise polynomial time bounded Turing machines

able to take o-structures asinputs. Call such amachine M symmetric with respect
tonif for every pair (S1, S2) of isomorphic ¢-gructures of cardinality at most

n, M accepts Sl if and only if it accepts 2. Given ac-structure Sof cardinaity

n and amachine M in SEN(a), put (S M) into SAT(c) if M issymmetric with
respect to n and M accepts S Notice that each MOD(M) is closed under
isomorphisms. The pair (SEN, SAT) isalogic capturing polynomial timein the
liberalized sense. L]

Remark The conjectureis closdy related to an open question of Chandra and
Hard [(12b) Section 5]. They ask (in somewhat different words) whether thereisa
recursve set T of polynomial time bounded Turing machines such that for every ¢
and every polynomial time recognizable classK of o-structures, K is closed under
isomorphismsif and only if it isthe collection of structures accepted by some
machinein T. Also, see the paper (5) of Arvind and Biswas in connection with the
conjecture.

The conjecture can be dightly simplified by restricting the attention to graphs.

Ddfinition 1.17 A graphlogic L isa pair (SEN, SAT) satisfying the following
reguirements. SEN isarecursive set whose elementsare called L-sentences. SAT
isarecursive subset of {(S, ¢): Sisafinite graph and ¢ isan L-sentence} such that
if graphs Sand S areisomorphic and (S @) belongsto SAT then (S, ¢) belongs to
SAT aswell. If (S o) belongsto some SAT, we say that Ssatisfies ¢.

Definition 1.18 If L isagraphlogicand ¢ isan L-sentence, then MOD(o) is the set
of o-structures satisfying o.
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Ddfinition 1.19 A graph logic L captures polynomial timeif:

1. For every L-sentence o, the class MOD(o) is polynomial time recognizable;
moreover, there isa Turing machine M that, given an L-sentence o, produces a
polynomial time bounded Turing machine M(¢) that recognizes MOD(¢).

2. For every polynomial time recognizable class K of graphs, if K is closed under
isomorphismsthen there isan L-sentence ¢ with MOD(p) = K.

Theorem 1.14 The following statements are equivalent.
1. Thereisalogic that captures polynomial time.
2. Thereisagraph logic that captures polynomial time.

Proof Theimplication (1) — (2) is obvious. To prove the other implication, we
use the well-known fact that an arbitrary structure Scan be efficiently represented
by a graph G(S) in such away that two structures Sl and S of the same signature
areisomorphic if and only if the graphs G(SL) and G(S2) areisomorphic.
Moreover, thereis a polynomial time Turing machine that, given the standard
encoding of an arbitrary structure S produces the desired graph G(S). If agraph
logic L = (SEN, SAT) captures polynomial time, defineL' = (SEN', SAT') where
for each 6, SEN'(c) - SEN and SAT'(c) = {(S, 9): Sisa c-structureand G(9)
satisfies ¢} . Obvioudly, L' captures polynomid time. L]

Let us notice that both the special case, when the presence of linear order is
assumed, and the general case, when the presence of linear order is not assumed,
areimportant. Asan input for a computing device, a sructure should be rep-
resented in some way. A representation itself can be viewed as a structure, and in
that richer structure a certain ordering of elementsis usualy definable. On the
other hand, oneis often interested in properties of structuresthat are independent
of representation; let us call such propertiesinvariant. To simplify somewhat the
Situation, let us view ordered versions of a given structure S as representations of
S

One way to ensure the invariance of a property of structuresisto expressthe
property in alogic that does not distinguish between different representations. For
example, FO + LFP sentences express only invariant properties. There is another
approach which isa priori more promising: allow linear order and concentrate on
those properties that do not depend on order. In therest of this section,
interpretations of the binary predicate symbol < arerestricted to linear orders. |If
the signature of a structure Scontains < then Swill be called ordered, otherwise
it will be called unordered. If ¢ isasignaturewithout <, Sisa gructure of

signature ¢ U{<} and & isthereduct of Sto ¢, we will say that & isthe unordered

version of S and Sisan ordered version of S, and any ordered version of & isa
reordering of S
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Ddfinition 1.20 Anr-ary global relation p of some signature s U {<} isinvariant on
astructure Sof signature s U {<} if for every reordering T of S, p5(x) < p'(X).

The global relation p isinvariant if it isabstract and invariant on every structure of
signaturec U {<}.

It iseasy to see that p isinvariant if and only if the boolean value of p¥(x)
depends only on theisomorphism type of (S, x> where S isthe unordered
version of S

The definition of invariant global relation p generalizesin a natural way to the
case when p isK'-global where K isan arbitrary class of ordered structures of

some signature o U { <} closed under isomorphisms and reorderings. Notice that
an algorithm computing an invariant K'-global relation may use the given ordering.

Example Given agroup with alinear order, the following agorithm computes the
center of the group:

C:=¢,
for x : = (thefirst element) to (thelast element) do
begin
flag :=1;
for y := (the first element) to (the last element) do
if xey #ye xthenflag: =0;
if flag=1then C:=CU{x}
end

Theorem 1.15 The decision problem whether a given first-order sentence with
possible occurrences of < yields an invariant global relation, is undecidable.

Proof Let o range over first-order sentences without occurrences of <. The
validity of o on al finite sructures is undecidable (64), hence the validity of o

on dl finite structures with at least two elementsisundecidable. Let P bea

unary predicate symbol that does not occur in o, and let  be a first-order

sentence of signature { P,<} asserting that < isalinear order and that the first
element in that order belongs to P whereas the last element does not. Then a.is
valid on all finite structures with at least two elementsif and only if the digunction
(cvor B) isinvariant. [

Remark Theorem 1.15 may be strengthened by means of different syntactic
reguirements on the given first-order formula: use numerous known strengthenings
of Trakhtenbrot's theorem.
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Theorem 1.16 Thereisafirst-order sentence ¢ such that the decision problem
whether ¢ isinvariant on a given ordered structure, is coNP compl ete.

Proof We consider arestriction of the 3-colorability problem which isaknown
NP complete problem (25). Let H be the graph with vertices 0, 1, 2, 3 and the
edges{0,1}, {1,2}, {2,3}, {3,0} and {0,2}; H isacycleof length 4 plusone
additional edge. H is3-colorable, and every 3-coloring of H assignsthe same
color to vertices 1 and 3. Let " be the set of graphsthat include H as a component.
It is assumed—uwith respect to the proviso of Section 1—that the vertices of any
member of " form aninitia segment of natural numbers. It iseasy to seethat the
restriction of 3-colorability problem toI" is NP complete. For every graph G in T’
let G* be the enrichment of G by means of the natural order of vertices.

Thedesired ¢ speaks about ordered graphs. It asserts that there are verticesx <y
such that the segments{v: v<x}, {v:x<v<y} and {v:y<V} condtitute a
3-coloring. It sufficesto prove that an arbitrary member G of I is 3-colorableif
and only if ¢ isnot invariant on G*. If G isnot 3-colorable then o fails on any
ordered version of G and, therefore, isinvariant on G*.

Suppose G is 3-colorable. Fix a3-coloring of G. Let Gl be any ordered
version of G where the vertices of color 1 form an initial segment and the vertices
of color 3form afinal segment. Let G2 be an ordered version of G where vertex
listhefirst and vertex 3isthelast. It is easy to see that ¢ holds on Gl and
fails on G2; hence G isnot invariant on G*. L]

SECTION 8. ISTHERE A LOGIC FOR NPNcoNP or R?

We give some evidence that no logic captures NPNcoNP global relations or
exactly R (random polynomial time recognizable) global relations. The argument
isan elaboration of aremark in (28) and uses Sipser's result (59) that each of the
two classes fails to have a compl ete problem (with respect to polynomial time
reductions) under an appropriate oracle. The notion of logics was defined in the
previous section. In connection with this section see arecent paper of Hartmanis
and Immerman (40).

Firg we consider class NPNcoNP. Nondeterministic Turing machinesM, N and a
polynomial f will be said to witness that a class K of structures of some signature

o isNPNcoNP if for every n and every o-structure Sof cardinality n, (i) Sbelongs
toK if and only if M accepts Swithin timef(n), and (ii) Sdoes not belong to K if
and only if N accepts Swithin time f(n).

Ddfinition 1.21 A logic L captures NPNcoNP if:
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1. For each L-sentence o, the class MOD(p) is NPNcoNP; moreover, for every
signature athereisa Turing machine that, given an L-sentence ¢ of signature o,
produces atriple (M, N, f) withessing that MOD(¢) is NPNcoNP; and

2. Every NPNcoNP class of structures of a fixed signatureis definable by an L-
sentence.

Theorem 1.17 If alogic L captures NPNcoNP then NPNcoNP has a complete
problem with respect to polynomial time reducibility.

Proof Let ¢ beasignature comprising one unary predicate symbol. Fix a Turing
machine A that generates all L-sentences of signature ¢, and a Turing machine B
that, given an L-sentence ¢ of signature ¢, generates atriple withessing that
MOD(¢p) is NPNcoNP. Let Q bethe set of tuples (o, o, B, M, N, f, S, 1) such
that (i) a isacomputation of A, ¢ isan L-sentence generated by «, p isthe
computation of B on @, (M, N, f) isthe output of B, Sisac-structure, nisthe
cardinality of S, 1™ isastring of 1's of length n, and (ii) Ssatisfies .

The condition (i) is polynomial time checkable. The condition (ii) isNP
(respectively coNP): guess a computation of M (respectively N) on Sof length
f(n) and verify that the computation is accepting. Thus the decision problem for
QisNPNcoNP. To show that this decision problem is NPNcoNP hard, we
reduce to Q the decision problem for an arbitrary NPNcoNP class X of binary
words. If wisabinary word ;. . . o, let S, be the o-structure with universe
{0,1, ....n} andreation {i: o; = 1}. (The universe contains n + | elements
because it should be honempty whereas n may be equal to 0.) Since L captures
NPNcoNP, thereisan L-sentence ¢ with MOD(9) ={S,: we X}. Leta bea
computation of A that outputs o, B be the computation of B on ¢, and (M, N, f)
be the output of B. Obvioudly, we Xiff S, & MOD(9p) iff (a, ¢, B, M, N, f, Sy,
1™y belongsto Q. "

Theorem 1.17 contrastswith Sipser'sresult (59) that, relative to some oracle A,
NPNcoNP does not possess a complete problem. (Certainly no logic captures
NPNcoNP under the oracle A because the proof of Theorem 1.17 relativizes) We
conjecture that if some logic captures NPNcoNP then something drastic happens
like NPNcoNP = P or NP = coNP. It may be desirable to restrict further the notion
of alogic capturing NPNcoNP. For example, one may request that L-sentences are
polynomial time recognizable.

Remark The converse of Theorem 1.17 istrueto the extent that, given an
NPNcoNP complete problem Q, one can congruct a set of "sentences' and a
satisfaction relation that capture NPNcoNP. Define sentences of signature aas
triples (M, f, 6) where M is a deterministic Turing machine able to take 6-
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structures asinputs, and fisa polynomial. Say that a o-structure Sof cardinality n
satisfies ¢ = (M, f, 6) if M halts on inputs Swithin timef(n), and the result M(S)
belongsto Q.

Definition 1.21 and Theorem 1.17 generaize to some other classes with well
defined withesses. We turn now to random polynomial time. Recall that a set K of
stringsin an aphabet > isRif and only if there are a deterministic Turing machine
M and polynomialsf, g such that for every n and every string se ' * of length n the
following are equivalent:

1. The string sbelongsto K,

2. Thereisastringtin {0, 139" such that M accepts the pair (s,t) within time f(n),
and

3. For at least one half of stringstin {0, 1}97, M accepts the pair (s,t) within time
f(n).

We say that (M, f, g) withnesses that K belongsto R. Without loss of generality,
we may supposethat fn> gnfor al n. The definition obviously generalizesto the
case when K isaclass of structures of afixed signature.

Ddfinition 1.22 A logic L capturesRif:

1. For each L-sentence ¢, MOD(p) is R; moreover, for every signature ¢ thereisa
Turing machine that, given an L-sentence ¢ of signature ¢, produces atriple (M, f,
g) witnessing that {S. Ssatisfies¢ } isR; and

2. BEvery R class of structures of a fixed signature is definable by an L-sentence.

Theorem 1.18 If alogic L captures R then R has a compl ete problem with respect
to polynomial timereducibility.

Proof Similar to that of Theorem 1.17. n

Theorem 1.18 contrasts with Sipser's result (59) that, relative to some oracle,
thereisno complete problem for R with respect to polynomial time reducibility.

SECTION9. MISCELLANY
9.1 Sequences of Bounded-Depth Cir cuits

We suppose here that signatures comprise only predicate symbols, and boolean
circuits have unique output gates. Recall that, according to the proviso of Section
1, the universes of structures are proper initial segments of natural numbers.
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Definition 1.23 A boolean circuit C isformatted with respect to a signaturec and a
positive integer nif input gates of C are labeled by sentences Q(iy, . . ., i;) where
Qbdongstoo, risthearity of Q, and every i, < n. (Every input gate has exactly
one labdl; hence, the number of input gates is bounded by the number of sentences
Qlig, ..., i)

Definition 1.24 A circuit C, formatted with respect to ¢ and n, accepts a c-structure
Sof cardinality nif C outputs 1 when the input gates of C are set with respect to S
(an input gate labeled Q(iy, . . . , i;) getsvalue 1 if Ssatisfies Q(iy, . - - , i), and
value 0 otherwise).

Definition 1.25 A class K of o-structures is definable by a sequence of circuits Cy,
C,, .. .if every C, can be formatted with respect to ¢ and n in such away that the
formatted circuit accepts a o-structure S of cardinality n if and only if Sbelongsto
K.

Lemmal5 Let ¢ beadgnature, ¢ be afirs-order o-sentence, and n be a positive
natural number. Thereisacircuit C,, formatted with respect toc and nin such a
way that the depth of C, isthelogical depth of ¢, and C,, accepts a o-structure Sof
cardindity n if and only if Ssatisfies .

Proof Let o, bethe extension of ¢ by individual constantsO, 1,...,n-1. By
induction, turn any sentence o, whose signature isincluded into o, into a
formatted circuit oy If o isatomic then o, isthe circuit comprising one gate
labeled a. The cases of conjunction, digunction and negation are cbvious. If ais

IXB(X) (respectivey VxB(X)) then join the circuits B(O)n, B(L)n, - - ., B(n- 1), by an
additional OR (respectively AND) gate. Finaly, ¢, isthe desired C,. L]

The sequence of circuits, constructed in the previous paragraph, is very uniform.
In particular, it islog-space congtructiblei.e. there is alog-space bounded Turing
machinethat, given the unary notation for n, produces (the standard code for) C,.

Let Lo bealogicthat captures exactly 1og-space recognizable global relations of
the empty vocabulary. L, can be the fragment of logic FO + DTC + < (see
Section 3) whose formulas contain no individual constants, no function symbols
and no predicate symbols except for <. Ly can be the calculus of primitive
recursive functions of the empty vocabulary (see Section 6); in this case the
formulasare equationst = 0. Let FO + L be the extension of first-order logic by
Lo whose formulas are built from first-order formulas and formulasin Lo by first-

order means (boolean connectives and quantifiers v,3); the global function
semantics for FO + L isobvious.
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Theorem 1.19 (35) Let K be aclass of structures of some signatures. The
following are equivalent:

1. K is definable by alog-space constructible sequence of circuits of bounded
depth,

2. Kis definable by a sentencein FO + L. [ ]

We skip the proof here. The theorem generalizes for many other complexity
classes (35).

Logic FO + Lo and many other extensions of first-order logic, considered above,
were specially tailored to capture respective complexity classes. Logic FO + Ly is
the most modest of these extensions. An interesting question arises whether first-
order logic itself captures any complexity class. Well, the answer to this question
depends on the definition of complexity classes. The problem of the definition of
complexity classesis a deegp one, and we are not going to tackleit here. Let us
only mention that Denenberg, Gurevich, and Shelah (17) have characterized firs-
order definable sequences of bounded-depth circuits by means of symmetry and
uniformity conditions.

9.2 A Note on Topology on Finite Sets

Thereisadefinite anal ogy between (i) classes of unary global relations definable
by sequences of circuits of bounded depth and polynomially bounded size, and (i)
Borel subsets of the Cantor discontinuum. This analogy was exploited by Sipser
in (60). Reading Ajtai's paper (3), we found it useful to think in terms of Borel
subsets of finite topological spaces. The definition of Borel subsets of finite
topological spacesis given in this subsection.

Recall that atopology is T (50) if al one-point subsets are closed; we are not
interested herein topologies that arenot T;. Every finite T, topological spaceis
discrete, i.e., every subset is both closed and open. Thus, the theory of finite T;
topological spaces seems to be quitetrivial. However, one may ask how many
intersections and unions does it take to express a given point-set in terms of sub-
basic open sets. Thisleadsto ageneralization of the Borel hierarchy to finite
topological spaces.

Definition 1.26 X, is the topological space whose points are subsets of {0,1, ...,
n - 1} and whose sub-basis comprises the n point-sets{P: i € P}.

The anal ogous definition with the set o of natural numbersinstead of {0,1, . . .,
n - 1} resultsin atopological space X,, homeomorphic to the Cantor Discontinuum
[(50), 83, I1X]. Borel subsets of X,, form the closure of the sub-basis
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under complements, countable intersections and countabl e unions. This suggests
the following:

Definition 1.27 A subset of X,, isBord of level 0if it issub-basic. It isBord of
level d, whered > 0, if it istheintersection of at most n Borel sets of levelsless
than d, or the union of at most n Borel sets of levels less than d, or the complement
of aBord set of alevel lessthan d.

Thereisan obvious connection between Borel point-sets and boolean circuits
with unique output gates. Suppose that C isacircuit with ninput gates labeled by
integersO, ..., n- 1 Intheobviousway, theinput of C representsapoint in X.
Cissaidto accept apoint P if the corresponding output is 1. C issaid to recognize
the set { P: C accepts P}.

Clam1 Let A beasubset of X, and d be a natural number. The following are
equivalent:

1. FisBord of leve d,

2. Thereisacircuit C with ninput gates labeled by integersO0, . . ., n- 1 such that
the depth of C isat most d, the fan-in of C-gatesis bounded by n, and C
recognizes A.

Proof isclear. ]

Ddfinition 1.28 A global point-set o assignsasubset of X,to each X,. If thereis
anatural number d such that the specification of = on each X, isBorel of level d
then misBord (of level d).

Clam 2 Thefollowing are equivalent:
1.ttisBord,

2. There is a bounded-depth pol ynomialy-bounded-si ze sequence of circuits C,
such that each C, recognizes the specialization of tt on X,.

Proof isclear. ]

Let P be aunary predicate symbol. A first-order sentence o(P) in signature { P}
defines aBord global point-set {P: ¢(P)} of level d wheredisthelogical depth of
o(P). Firg-order definable point-set & are symmetric in the following sense: if Py
and P, are subsets of X, of the same cardinaity then P, belongstoisthe
specialization of = on X, if and only if P, does. Some Borel global point-sets are
symmetric in that sense but not first-order definable (17, 22).
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PART 2. DYNAMIC STRUCTURESWITH BOUNDED RESOURCES

Onefindsagreat many forma languages in computer science: programming
languages, query languages, etc. It isnatura for alogician to ask what structures
are suited to model those formal languages. For example, what are models for
Pascal ? Of coursg, it ishot necessary to start with formal languages. One can ask
what structures are appropriate to formalize machines, databases and other objects
of interest in computer science. We adopt the unspoken assumption of
mathematiciansthat in principle there are appropriate structures; the problem isto
find them.

SECTION 10. DYNAMIC STRUCTURESWITH BOUNDED
RESOURCES, AND TURING'STHESIS

This section develops the ideas presented first in technical report (31) and is sort
of an extended abstract for (34). | am thankful to Kit Fine for his comments on the
report, and to Andreas Blass for many useful discussions.

10.1 Abstract M achineswith Bounded Resour ces

The popular and useful abstraction of unbounded resources may be inappropriate
under certain circumstances. For example, one may be reluctant to idedize his/her
computer as a machine with unbounded memory if the computer keeps running
out of memory all thetime.

In (31) and (33) we discussed anew kind of abstract machines, called dynamic
structures or dynamic agebras, whose resources may be bounded. Sometimesitis
easier to express one's arguments in a discussion. Please allow me the liberty of
introducing an opponent (a skeptical graduate student).

Objetion 1 Thereisaready avery well worked out formalization of machines
with bounded resources. | mean finite state machines. Y our dynamic structures
with bounded resources are finite state machines too, aren't they?

Answer Yes, dynamic structures with bounded resources are finite state ma-
chines. But their theory does not reduce to the classical theory of finite sate
machines because the number of states may be overwhelming. Dynamic structure
with bounded resources may capture the behavior of real computers (like PDP-11
or Macintosh) or modd real programming languages (like Pascal or Smalltalk).
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It isnot feasible to draw the diagram or to write down the transition table (or a
regular expression) for such afinite state machine.

Objetion 2 | do not understand how a machine with bounded resources can model
Pascal. Consider a Pasca program for computing factorials. A machine with
unbounded resources is needed to provide an operational meaning to the program.
Every machine with bounded resources fails to compute the factorial of some
sufficiently large integer; it cannot give an adequate operational meaning to the
program.

Answer A good point. The meaning will be given by afamily of finite machines
(in the same way as the meaning of afirst-order formulais given by a family of
first-order structures). A family of finite Pascal machines will be briefly sketched
below. Hereis asimpler example of afamily: bounded-tape versions of a given
Turing machine T with special end-of-tape marks.

Objettion 3 Let meignore the end-of-tape marks (I guess that bounded-tape
versions of T without end-of-tape marks form alegitimate family too). Then the
computation of any bounded-tape version of T isan initial segment of the com-
putation of T, and the cut-off point isirrdevant to the meaning of the program. |
would prefer to consider the computation of T itself rather than a pretty arbitrary
collection of initial segments of the computation.

Answer Yes, in many cases, amachine with unbounded resources gives a cleaner
operationa semantics. But not always. The end-of-tape marks were therefor a
reason. Machines with bounded resources may know their resources and utilize
this knowledge. A program for bounded-tape machines may use the end-of-tape
mark for different purposes; for example, the end-of-tape mark may be used for
dividing the tape equally into aleft and aright part and executing two different
processes in atime-sharing fashion. More convincing examples of how abstract
machines with bounded resources may use their knowledge of bounded resources
come from redl life. Think about operating systems. In particular, think about an
operating system which may run on many computers and which starts with an
inventory of the available resources. Of course, this program (the operating
system) can be modeled by a machine with unbounded resources, but thisisnot
necessarily the best way to provide an operational semanticsto the program.

10.2 Dynamic Structures

The usua mathematical structures, and in particular first-order structures, are
static. They do not change in time. Mathematicians tend to formalize dynamic
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situations in a static way. Given a dynamic processin an n-dimensiona space, a
mathematician introduces an additional dimension for time and studies the
resulting (n + I)-dimensiona body which represents all states of the origina n-
dimensional process at once.

Typical objects of computer science—machines, databases—are dynamic. They
evolvein time. Of course, the sametrick of representing all states at once can be
used. Thisis exactly what you do when you draw the diagram of afinite
automaton. Often, thetrick does not work well. We bdieve that the difficulties are
related to the overwhelming complexity of computing processes (versus, say,
abstracted physical processes). Thereisno smple system of equations describing
the behavior of alarge time-sharing computer system. On the other hand, com-
puting processes often have a certain simplicity in them: they evolve in discrete
time and the states aswell asatomic transitions are relatively ssimple.

The dynamic structure approach attempts to utilize the simple features of
computing processes. A dynamic structure is a static structure (theinitia con-
figuration of the dynamic structure) evolving in discrete time with respect to
specified trangtion rules. To specify a dynamic structure one needs to specify a
static structure and transition rules.

Thenotion of dynamic structure may strike as an old news. Thereare similar
notions in the literature; let me mention only transition systems in Gordon Plot-
kin'sreport (55). We see the main novelty in the intended use of dynamic
structures. The configuration of discourseis going to play a greater role than the
set of all configurations; from that point of view logic of dynamic structuresis
similar to temporal logic. Configurations are full-fledged static structures which
have usually several universes. Here are some relevant questions. Do the universes
change? Can new universes appear? Can old universes disappear? Does the
signature change? What isthe form of transgtion rules? Some other important
notions are: bounded resources, families of dynamic structures, the dynamic
structure of discourse.

Only special classes of static structures are defined formally in mathematical
logic: usud first-order structures, many-sorted first-order structures, standard
second-order structures, nonstandard second-order structures, etc. The general
notion of static structuresremainsinformal. Similarly, we leave the general
notions of dynamic structures informal and define formally only special classes of
dynamic structures. The notion of afamily of dynamic structuresis left informal
too. We require however that all members of a family have the same trangtion
rules.

To have anontrivial example of a dynamic structure, one may formalize a
modest computing device (on some level of abstraction). In connection with (33),
my student, Bob Blakley, has worked out aformalization of PDP-11/04, the
smallest machine using DEC's well-known PDP-11 architecture. Theresulting
dynamic structure is an evol ving many-sorted first-order structure with static
universes, static signature and transition rules of a very smple form.
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Universes of theformalized PDF-11704 are Registers={RO, ..., R7},
Addresses € {0,1} ", Words = {0,1}*®, Opcodes, etc. Elements of Registers
represent the 8 registers of the computer. PDP-11/04 uses register R7 asthe
instruction pointer. Elements of Opcodes represent legal assembly-language in-
structionsin the PDP-11/04 ingtruction set. The set of addresses varies from one

implementation of PDP-11 to another. To reflect this fact, the extent of Addresses
isnot fixed in Blakley's formalization.

Many basic functions of the dynamic sructure are static: arithmetical operations,
the eight zero-ary functions (i.e. distinguished elements) RI-R7 of type Registers, a

function Addrtrandate from Words to (Addressesu { Error}), afunction Getop

from Words to Opcodes, etc. Addrtrandate converts words (elements of Words)
to addresses (elements of Addresses). If aword wis an address then
Addrtrandate(w) = w, otherwise Addrtrandate(w) = Error. The analog of
Addrtrand ate for some other computers may be more complicated; onereason is
that words may be longer than addresses.

Some dynamic basic functions of the formalized PDP-11 are
Regcontents: Registers — Words,

Contents: Addresses — Words,

Currentop, a distinguished element of Opcodes.

Thefollowing transition ruleis self-explanatory:

Currentop < Getop(Contents(Addrtrand ate(Regcontents(R7)))).

Remark Theidea of bounded resources and the idea of dynamic character are
independent. One can study infinite static structures, finite static structures,
dynamic structures with unbounded resources, and dynamic structures with
bounded resources.

10.3 Turing'sThesisand Finite Dynamic Structures

A strong form of Turing's thesis states that every computing device can be
simulated by an appropriate Turing machine (24). The thesis|oses some appeal if
one restricts attention to computing devices with bounded resources because the
resources of Turing machines are unbounded. This brings us to the question of an
analog of Turing's thesisfor the case of machines with bounded resources.

New thes's problem (first draft formulation). Define amodest class U (for
‘universal’) of abstract machines with bounded resources such that every com-
puting device with bounded resources can be closely simulated by a U-machine
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of comparable specification and information sizes, and every family of computing
devices with bounded resources can be appropriately ssmulated by afamily of
U-machines.

We spesk about amodest class, close simulations and comparable sizes in order
to exclude some unsatisfactory solutions. Let us explain that.

The computing devices in question are supposed to be real devices satisfying
some minimal assumptions. (Actudly, it isalittle more complicated. We should
be talking about a computing device and afixed level of abstraction, of omitting
details.) A part of the desired solution isthat U-machines are dynamic structures.
Thisis not a complete solution. First, the notion of dynamic structures was | eft
informal. Second, dynamic structures may be used as virtual machines (for
example, to model higher level programming languages) and therefore may be
more complex than needed for the thesis. The desired class U should be well-
defined and as simple as possible.

It isreasonable to assumethat a computing device with bounded resources can
be step-by-step ssimulated by afinite state transducer. (A finite state transducer isa
finite automaton with output; asimulation is step-by-step if every step of the
simulated machine corresponds to one step of the simulating machine.) Even if we
ignore the question of families of finite state transducers, the reduction to finite
state transducers should be treated with caution: the transition table of the
simulating transducer may be much bigger than the description of the smulated
device. The specification size of the simulating machine should be severely
bounded in terms of the specification size of the simulated machine.

It would also be unsatisfactory if the number of states of the simulating machine
too greatly exceeds the number of states of the simulated machine. The logarithm
of number of states can be called the information size (9). Thus, the information
size of the simulating machine should be severely bounded in terms of the
information size of the simulated machine.

Bounded-tape versions of Turing machines with end-of-tape marks congtitute
one possible solution for the new thesis problem (31). An argument Smilar to
Turing'sinformal proof of histhesis (66) establishes that for every computing
device D with bounded resources there is an appropriate bounded-tape Turing
machinethat simulates D. This solution is unsatisfactory even if we put aside the
question of the specification and information sizes. the simulations may be too
complex and indirect. (Imagine, for example, that D is Apple's Macintosh in any
of itsincarnations.)

Remark Onemay argue that Turing'sthesisitself has the same drawback. We
agree; Turing machines are clumsy simulators. But who said that Turing'sthesis
cannot be improved? An early improvement of Turing's thesis was worked out by
Kolmogoroff and Uspenski (48). So-called random access machines (1) are very
popular. Very interesting machines were introduced by Schoenhage (58).
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Which smulations should be permissible? Step-by-step simulations are ideal.
Arethey too restrictive? Recall that, in the case of machines with unbounded
resources, asimulation is called real-timeif one step of the smulated machine
corresponds to at most ¢ steps of the smulating machine where ¢ is a constant.
One can adapt this definition to the case of machines with bounded resources by
imposing arestriction on the constant ¢ in terms of the specification and
information sizes of the simulated machine. Then one can require that only real-
time simulations are permissible.

In (34) weintend to discuss more interesting solutions for the new thesis
problem: Kolmogoroff-Uspenski machines with bounded resources, Schoenhage
machines with bounded resources, random access machineswith bounded re-
sources and the solution proposed in (33). Andreas Blass and the author continue
to work on the problem (9); the joint work has grestly influenced this section.

SECTION 11. MODELSFOR PASCAL
This section can be read independently.
11.1 Preiminaries

Imagine that you read a Pascal program and come across an assignment X:= X.
What a slly thing to write, you may think. The assignment is obviously super-
fluous. Or isit there for areason? Maybe it appearsin the definition of afunction
procedure x in order to trigger the side effects of procedure x? Y ou check and find
out that x isa variable of type INTEGER. If there were several processes, then the
purpose of the assignment could be related to synchronization or claiming a shared
variable. But no, thisis standard Pascal with only one process. Y ou can think up
some other possible effects of the assignment in some other languages, but all that
seemsto beirrelevant to Pascal. Y ou become convinced that the assignment can
be deleted. But the deletion changes the program and its execution somewhat.
Maybe theright reason for the assignment just did not pop up in your mind. Y ou
would liketo be able to prove that the deletion does not change your program in
any essential way. Y our semantics of Pascal should facilitate easy proofs of such
simplefacts.

Semantics of programming languagesisavery rich field (some of our sources
appear in thelig of references). Still it seems to us that no known formal
semanticsis sufficiently convenient to ded with real-life imperative languages.
"Unfortunately, all of the formal approaches to semantic definition require a great
deal of sophigticated effort and produce a result which isimpossible to read
without extensive study," writes Ellis Horowitz in his Fundamental s of
Programming Languages (43).
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We would liketo model programming languages, and in particular Pascal, by
means of dynamic structures with bounded resources. Recall that dynamic struc-
tures are generalizations of the many-sorted static structures used in mathematical
logic. They evolve in discrete time; every configuration of a dynamic structureisa
static structure. To specify a dynamic structure one should specify itsinitial
configuration and transition rules. Recall also that dynamic structures with finite
resources are finite state machines (rather than potentialy infinite machines), and
that semantics of a programming language is supposed to be given by a family of
resource-bounded dynamic structures with the same language of initia
configurations and the same finite set of transition rules.

The desired Pascal models are ideal Pascal machines that directly execute Pascal
programs. Many questions ariseimmediately. In what form should Pascal
programs be given? What isthe language of initial configurations? Should sub-
sequent configurations have the same language or should the language of con-
figurations evolve? How much can be executed in one step? How simple should
the transition rules be? How should one impose a bound on the memory? And so
on, and so on. This section was written with the active participation of my
graduate student Jm Morris. To answer the above questions, wetried to userich
experience of real-world Pascal implementations, the insight and achievements of
present-day semantics of programming languages, and analogiesin classical logic.

A family of Pascal modelsis sketched in Section 11.2. Answering our solic-
itation of problems, Albert Meyer sent us anumber of simple claims about Pascal
including the claim about the superfluousness of the assignment x:= x where xis
an integer variable. In Section 11.3 we sketch proofs of three of Meyer's claimsin
our semantics. In thefinal Section 11.4, we discuss in particular the question of
when two Pascal programs have the same meaning.

We barely touch upon the issue of bounded resources in this section. That issue
and others (possible applications of semantics of programming languages go far
beyond proving simple claims about existing programming languages) will be
addressed in (36) and elsewhere.

Acknowledgements | am thankful to Jim Morris for help, to Albert Meyer for
sending the problems, to Albert Meyer, David Gries, and my Michigan colleagues
Andreas Blass, Bernie Galler, and others for useful discussions.

11.2 Modelsfor Pascal

We shall outline afinite dynamic structure M(Prog) where Prog is a Pascal
program. Some parts of M(Prog) depend on Prog and some do not. One can
abstract the underlying machine M which isa Pascal interpreter of a sort. For the
sake of brevity, we will stress here the machine-like (rather than algebraic) aspects
of M(Prog).
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Theinitial configuration of M(Prog) is a finite many-sorted static structure.
Some of the universes do not depend on Prog: an interval of integer numbers, a set
of real numbers, the boolean universe {true, false}, a set of identifiers, and so on.
Theinterva of integer numbersis equipped with the usual linear order, (the
restrictions of) the usual arithmetical operations, distinguished dements MAXINT
and MININT. We treet relations as bool ean-val ued functions. The only basic
function defined on identifiersisthe boolean function of equality. (Thus,
identifiers are seen as meretokens. In practice the token arerepresented by strings
of lettersand digits starting with aletter. Several strings may represent the same
token. It may be, for example, that two strings of length 16 or more represent the
same token if they have the same initial segment of length 16.)

The program Prog is given in the form of a decorated" parse tree which
constitutes auniversein theinitia configuration. Each type declared in Prog
congtitutes a universe of M(Prog). Many universes and many basic functions of
M(Prog) are static; they are part of theinitial configuration and do not change
during the evolution of M(Prog).

One semantical complication isrelated to thefact that Pascal allows the
programmer to reuse identifiers and labels. The name of a procedure, a variable,
etc. may not identify the corresponding declaration uniquely. In order to provide
unique names to different procedures, types and variables, we adopt a common
convention. If aprogram Prog declares a procedure P1 which declares a procedure
P2 which declares a procedure P3 (so that the procedures P1, P2 and P3 are of
levels 1, 2 and 3, respectively, in Prog) then we will call the procedures (and the
corresponding blocks) P1, P1.P2, P1.P2.P3 or Prog.P1, Prog.P1.P2,
Prog.P1.P2.P3, respectively. If a Pascal variable x isdeclared in ablock B (so
that B isthe smallest block containing the declaration), it will be called B.x. The
denotation of B.x will be called araw variable because in general the block B may
be called recursively, and B.x may have several incarnationswhich arevariablesin
their own right.

The complication arising from the reuse of identifiers and labelsisnot serious.
Whenever one comes across a node of the parse tree decorated with an identifier, it
is aways clear which declaration of theidentifier isrelevant. Toreveal this
information, we use a special static function Decl which alows us to compute the
Sgnification of theidentifier in question. In the case of a variable name,
Signification indicates the relevant raw variable. Signification isadynamic
function which solves, in particular, the aliasing problem (63).

Remark Onemay prefer to create the types and to compute the necessary values
of the Decl function during the evolution of the machine. For some languages that
may be the only alternative, but Pascal programs explicitly declare

The decoration reflects the so-called static semantics of the program.
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new types and use gatic binding of variables, which alows us to have all types
and the Decl function from the beginning. Applying the principle of separation of
concerns (26), we would like to get somerelatively easy syntactical things out of
the way by incorporating them into theinitial configuration.

Transition rules of M specify the evolution from a given state to the next one.
They do not depend on the given program. Let us perform an imaginary exper-
iment. Imagine that you (rather than a computer) execute a Pascal program. What
information should you keep in mind (or on paper)? Y ou should know where you
are currently in the program and where you should return after executing a
procedure. Y ou should know which variables exist and what their values are. You
may need to remember the results of different subcomputations, in particular the
values of different expressions and subexpressions; etc.

Torecord the current position in the program, M(Prog) has a O-ary dynamic
function (i.e. adynamic distinguished element) called the active node, or control,
whose possible values are nodes of the parse tree. Usually, one transition takes the
control to a child or the parent of the currently active node. The exceptions are
related to goto statements and procedure cals.

Torecord procedure calls and where to return from them, M(Prog) has a stack
that will be called the procedure stack. Therestriction allows usto get away with a
simpler procedure stack. Formally speaking, the procedure stack is function from
an initial segment of natural numbersto nodes of the parse tree. When a procedure
iscaled at some node N of the parsetree, M(PROG) "pushes’ N onto the stack
and the contral istransferred to Signification(N). When the execution of the
procedureisfinished, Nis"popped off" the stack and contral returnsto N.

Torecord values of Pascal variables, M uses a dynamic function V-val. The
domain of V-val containsall raw variables. To record the values of all incarnations
of B.x, V-val maintains a special B.x-stack, afunction from an initial segment of
natural numbers to an appropriate type augmented with an additiona value
‘uninitialized." Whenever control entersthe block B, the value 'uninitiaized' is
pushed onto the B.x-stack; and when the execution of B is finished, the top of the
B.x-stack is popped off.

A dynamic function N-val records (on appropriate nodes of the parse tree) the
results of different subcomputations, in particular the values of different expres-
sions and subexpressions. We use "OK" to indicate the successful execution of a
command. (Another a priori possible result of the execution of acommandis
"Error.") Since procedures may be called recursively, N-val assigns a stack of
valuesto anode. Consider for example the evaluation of (a + b) + f(c) in the body
of a function procedure f. Thevalueof a+ bis"hanged" on somenode N if
"a+ b" isevaluated during thefirst call on f, then anew value of
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a + b may be "hanged" on the same node N on top of the previous val ues each time
therecursive call onf isexecuted, and so on.

Thereisaso auniverse called Space whose e ements are called units. In
implementations, a unit may correspond to one byte, to two bytes, or even toa
single hit. A gtatic function Sze tellshow many units of Space are needed for this
or that purpose, and a dynamic function Available tells how many units of Space
are available.

That ends our incompl ete sketch of M(Prog). We did not specify any transition
rules, did not discuss the parameter mechanism, did not discuss how the input is
provided, etc. The details—for Modula-2 rather than Pascal—will appear in (36).

Notice that we are taking about a whole class PM of Pascal models. What may
distinguish one member of PM from another? Theinterval of integers, the set of
identifiers, etc. All members have literaly the same transition rules. (Trangtion
rules are given syntactically; they are written once for all members of PM.) The
meaning of a Pascal program Prog is given by dynamic structures M(Prog) where
M varies over those members of PM which contain all identifiers used in Prog.
Thisis amilar to the situation in mathematical |ogic where the global meaning of a
first-order formulais given by the local meanings of the formula on those
structures whose signatures include that of the formula.

11.3 Three Simple Problems of Meyer

For expository purposes, we allowed ourselves dight modifications of the original
problems. In this subsection, a program means a Pascal program.

Clam1 (Thecase of the superfluous statement.)

Let Prog2 be theresult of deleting an assignment x := X, wherex isan INTEGER
variable, in a program Progl. Then Prog2 is equivalent to Progl.

Clam 2 (The case of the superfluous variable declaration.)

Suppose that a program Progl contains a procedure Progl.P with declaration
PROCEDURE P;

VAR x: INTEGER,;

BEGIN

END;

where the body does not mention x. Let Prog2 be the result of deleting the
declaration of P.x in Progl. Then Prog2 is equivalent to Progl.
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Clam 3 (Thecase of the superfluous procedure declaration.)

Suppose that a Pascal program Progl has parameter-free procedures Progl.P,
Prog 1.Q and Progl.Q: P such that the declarations of P and Q.P areidentical and
the freeidentifiers of Q.P are not captured within Q. Let Prog2 be the result of
deleting the declaration of Q.P in Progl. Then Prog2 is equivalent to Progl.

Claification 1 What does it mean to delete an assignment, avariable declaration or
a procedure declaration? To simplify the exposition, we suppose that we are
allowed to use the empty statement, the empty variable declaration and the empty
procedure declaration. Then the deletions can be interpreted as replacements with
appropriate empty objects. Notice that if the assignment was labeled then the new
empty statement is labeled.

Claification 2 What does it mean that two Pascal programs are equivaent? Thisis
a complicated question; it will be addressed in the next subsection. In this
subsection two programs will be called equivalent if, provided the necessary
resources, they exhibit the same input-output behavior. In other words, programs
Progl and Prog2 are equivalent if they have the sameinput domain D, and for
every Pascal model M and every input X in D the following condition is satisfied.
If M contains all identifiersthat occur in Progl or Prog2 and if M(Progl),
M(Prog2) do not run out of memory on X then either both structures M(Progl),
M(Prog2) converge on X or both structures diverge on X, but in either case the
structures produce identical outputs on X.

Claim 1 was already discussed informally. Now let us discussinformally
Clams2and 3.

The case of the superfluous variable declaration. Even though x does not occur
in the body of P, some procedure Q with afree integer variable x may be called
during the execution of P. The free variable x of the procedure Q will be
interpreted as B.x where B is the least block that contains the appropriate dec-
laration of Q and declares an integer variable x. Obvioudly, B is different from the
block of P, and B.x is different from P.x. So the deletion of the declaration of P.x
won't matter.

The case of the superfluous procedure declaration. Deleting Q.P means that
calson Q.P in Progl will be interpreted as callson P in Prog2. Since P and Q.P
are parameterless procedures with identical declarations, the execution of P can
differ from the execution of Q.P only if the binding declaration of some free
identifier | of P differs from the binding declaration of the free identifier | of Q.P,
which meansthat Q contains a declaration of I, which meansthat | is captured
within Q, which isimpossible.
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Proof Sketch for Claim1 Given amachine M, let Mi = M(Progi) and Ti be the
parsetree of Progi. T2 isobtained from T1 by replacing the subtree t1 of an
assignment x:= x with a single-node tree t2 corresponding to the empty statement.
Let T bethe common part of Tland T2.

Cdl astate of Mi black if itsactive nodeisin T, otherwise call it red. (The terms
"black™ and "red" arerelated to the expressions "to bein theblack" and "to be in
thered.") Say that a state Sl of Ml and astate 2 of M2 agree if

1. the active nodes of S1 and S2 coincide (which meansin particular that both
states are black),

2. the procedure stacks and the V-vals coincide, and
3. the N-valscoincideon T.

Say that a sequence of states of Ml and a sequence of states of M2 agree if
erasing al red statesin both sequences results in two sequences of the same (finite
or infinite) length where the corresponding members agree. It suffices to prove
that the computations (viewed as sequences of states) of Ml and M2 on the same
input agree.

In theinitial states, the active nodes are the roots of the respective parse trees,
and the procedure stacks and the functions V-val, N-val are empty; thustheinitial
states agree. Suppose that 3 isablack state of Mi, and the states S1, 2 agree.
Then

1 Slisfinal (halting) if and only if S2is 0,

2 the successor of Sl isblack if and only if the successor of R is so,

3. if the successors are black then they agree, and

4 if the successors are red then for neither i is S thelast black state of Mi.

It remainsto provethat if the successors of S, 2 arered then thefirst black
state after S1 agrees with the first black state after 2. Let us see what happens
when each Mi goes through thered states following S. Theactivenode X of S is
either the parent of root(ti) or theroot of the subtree of a goto statement. In either
case the control leaves X without changing the N-val at X. No procedureiscalled
or exited when Mi goes through the red states, therefore the procedure stack does
not change. The V-val does not change because the only relevant raw variableis
B.x, where B isthe block of ti, and the B.x-stack does not change. Therestriction
of the N-val to T does not change because, in the absence of procedure calls, the
N-val changes only at the active node. Eventually the control findsits way to the
parent of root(ti), and Mi arrives to some black state S'. Obvioudly, S1' and &2

agree.
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Remark Onemay wonder whether thereisany difference between S and S'.
The answer isyes. In 9, thetop value of the N-vd at root(ti) is "undefined”;
whereasin S', the top value of the N-va at root(ti) is"OK."

Proof Sketch for Claim2 The proof is similar to that of Claim 1. There are only
two important differences. Oneisrdated to the definition of agreeing states. The
requirement that the two V-vals coincide isreplaced by the requirement that the
two V-vals coincide on the domain of V-vals of M2. The modification isnecessary
because the domain of V-vals of Ml containsan additional raw variable P.x.

The second difference of importanceis related to the verification that the black
successors of agreeing states agree. The transition may deal with an integer
variablex, but—aswe explained above in theinformal discussion—Progl will
never interpret that x as P.x. Moreover, the two programs will interpret x in the
same way. What we heed is a separate simple lemmathat the two Decl functions
coincide on the common part of the parse trees. .

Proof Sketch of Claim3 Again, the proof is similar to that of Claim 1. Let Mi =
M(Progi) and Ti be the parse tree of Progi. T2 isobtained from T1 by replacing
the subtree t(Q.P) of the declaration of Q.P with a single-node tree corresponding
to the empty procedure declaration. Let t(P) be the subtree of the declaration of P,
and let T be the common part of T1 and T2.

Thistime we do not need red states: when the active node of Ml traverses t(Q.P),
the active node of M2 traversest(P). One little complication in the proof is that
the corresponding states of Ml and M2 may have somewhat different V-vals (even
though the V-vals have the same domain) and somewhat different restrictions of
the N-valsto T. To overcome this difficulty, we introduce extended stacks. The
extended stacks are imaginary, they are not parts of our Pascal models.

Let B. x be an arbitrary raw variable of an arbitrary M(Prog). The V-val of
M(Prog) maintains a B.x-stack. The extended B .x-stack isthe B.x-stack possibly
"diluted" with copies of a new item 'empty'. Whenever ablock different from B is
called, acopy of 'empty’ is pushed on the extended B.x-stack, and whenever any
block is exited, the top of the extended B.x-stack is popped off. The N-val assigns
stacks of values to nodes; the corresponding extended stacks are defined in a
similar way.

Condder the extended stacks of two raw variables B1.x and B2.x, where the
blocks B1 and B2 are different. It isimpossible that for somei, the extended stacks
have i-th items that are both different from 'empty’. Thisallows usto merge the
two extended stacks into anew stack whaose height isthe minimum of the heights
of thetwo given stacks. Suppose that u isthe i-th item of the extended B1.x-stack
and v isthei-th item of the extended B2.x-stack. What is
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thei-th item win the new stack? If u differs from 'empty’ then w= u; if v differs
from 'empty’ then w=v; otherwise w is 'empty.’

Now we areready to define agreeing states. A state S1 of M| agrees with a state
S of M2 if thefollowing conditions (a)-(d) are satisfied.

(a) Either the active node of Sl coincides with the active node of &, or the active
node of Sl isin t(Q.P) and the corresponding node of t(P) isactivein 2.

(b) The procedure stacks of S1 and & coincide.

(c) For every raw variable B.x, declared within the block of P, the extended B.x-
stack of 2 isthe merger of the exttended B.x-stack and the extended Q.B.x-stack
of S1. For every other raw variable C.y, the C.y-stacks of S1 and S2 coincide.

(d) For every node N in T-t(P) the N-stacks of S1 and 2 coincide. If N belongsto
t(P) and N' is the corresponding node in t(Q.P) then the extended N-stack of 2 is
the merger of the extended N-stack of S1 and the extended N-stack of Sl.

It iseasy to check now that for every input |, the computation of Ml on |
and the computation of M2 on | have the same length, and the corresponding
members agree. It follows that Progl and Prog2 are equivalent. L]

11.4 Final Remarks
11.4.1 Equivalent Programs
Let us address the question
(*) When do two Pascal programs have the same meaning?

The equivalencerelation of Section 11.3 isone answer to (*). Under certain
circumstances it may be unsatisfactory. Imagine that Progl and Prog2 solve the
same NP problem and are equivalent in the sense of Section 11.3, but Progl works
in linear time whereas Prog2 works in exponential time. It does not seem right to
consider them as having the same meaning. One may refine the equivalence
relation of Section 11.3 to give different answersto (*). One may require, for
example, that the computations of Progl and Prog2 simulate each other in redl
time, or that the histories of global variables areidentical. (The proof of each of
the three claims above establishes both stronger equivalences.)

We think that there are many reasonable answersto (*) and that an appropriate
answer depends on the circumstances.

It isinteresting to compare question (*) with the smilar question for first-order
formulas. The standard answer to the latter question is that two first-order
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formulas have the same meaning if and only if they are logically equivalent (i.e.,
define the same global relation). Thisignores the computational aspect of for-
mulas, in particular the cost of computing corresponding relations.

11.4.2 Distinguishing Features of the Proposed Semantics

Ellis Horowitz writes [(43), Section 2.1]: "Interpretative semantics begins by
defining an abstract machine. This machine supports asimple set of operations and
data structures. Then the semantics of the language being defined is given by a set
of rules which show how programs will be translated onto the abstract machine.
The Vienna Definition Language (70), which was devel oped as ameans for
formally defining PL/1, isthe prime example of thisapproach." Our semanticsis
interpretative (or operational) because of the use of abstract machines, but itis
somewhat different.

1. We define afamily of abstract machines with bounded resources rather than one
abstract machine with unbounded resources. Each machine gives alocal meaning
to a program, and the family gives the global meaning. (From that point of view,
the semantics can be called global or multi-model.) Multi-modd semanticsis
especially appropriate to handle implementation defined constants. (If your Pascal
model has all integersthen what isthe meaning of MAXINT?) As amatter of fact,
the presence of implementation defined constants makes modeling easier.

2. Wetailor our machinesto the given language (rather than trandate the given
language to the fixed language of a unique abstract machine). In this section, we
described Pascal machines. We considered a so models for different variations and
extensions of Pascal (in particular, to check that passing a simple variable by name
has the same effect as passing it by reference). In (36), we describe Modula-2
machines. We intend to mode languages for parallél and distributing computing,
and different other languages.

3. Our machines are algebraic structures of a sort, namely dynamic structures. (We
would call the proposed semantics algebraic if the term were not taken (27).) To
explain what we mean by the algebraic character of our models, let us point out
the difference between usual agebraic structures, say graphs, and their
representations. One does not care about the nature of the vertices, may not have
unique names for the vertices, does not distinguish between isomorphic graphs.
Similarly, we do not care about the nature of the elements of our models, may not
have unique names for the elements, do not distinguish between isomorphic
models. (For example, for any member M of the class PM of Pascal models, any
permutation of identifiers givesrise to an automorphism of M.)
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11.4.3 Solicitation

The exampl es above suggest using the proposed semantics for proving general
properties of programs and correctness of different transformations (like source-to-
source transformations employed by optimizing compilers). Dealing with two
models of different levels of abstraction, we use the approach for proving cor-
rectness of source-to-target transformations (36). A related theoretical problemis
to work out a useful notion of homomorphism of dynamic structures.

We are soliciting interesting and chalenging problems about Pascal or other
(real or imaginary) imperative languages. We are especially interested in problems
related to limited resources.

APPENDIX. TWO-WAY MULTIHEAD AUTOMATA

A two-way multihead automaton can be described as amultihead Turing machine
without any work tape. It is well-known that, as recognizing devices, deterministic
(respectively, nondeterministic) two-way multihead automata are equivalent to
determinigtic (respectively nondeterminigtic) log-space bounded Turing machines.
Hartmanis and Hunt say in their 1974 paper (39) that thisis awell-known fact and
refer for amore compl ete proof to a 1972 paper of Hartmanis. It is aso well-
known that the equivalence survivesif alternation is allowed. For reader's
convenience, we prove here these facts.

Remark To accommodate naturally standard representations of structures (see
81), we alow Turing machines and two-way multihead finite automata to have
several input tapes. One of these input tapes is the universe tape that containsthe
unary notation for the cardinality of the given structure. Wewill ignore structures
of cardinality 1, and will suppose that the end-cells of the universe tape are
specially marked.

Theaorem 1.20 A global relation isrecognizable in log-space by a determinigtic
(respectively nondeterminidtic, aternating) Turing machineif and only if itis
recognizable by a deterministic (respectively nondeterministic, aternating) two-
way multihead finite automaton.

Proof The"if" implication is easy (and will not be used): record the current
positions of the automaton heads on awork tape.

To prove the"only if" implication, suppose that alog-space bounded Turing
machine M recognizes the global relation in question. Let n be the length of the
universe tape. Without loss of generality, we can assume the following about

www.manaraa.com



52 Logic and the Challenge of Computer Science

M: it has only one work tape, on each step the work tape head either writes or
moves but not both, the work tape alphabet is{0,1} where 0is also the blank, the
end cdlls of the work tape never hold zeros, initially the head of the work tapeisin
the leftmost position, and a configuration of M is accepting if and only if the
corresponding internal state is one of the specially designated accepting states.

Let u be the content of the initia segment of the current work tape up to and
including the position of the head, v* be the content of the corresponding final
segment, and v be the reverse of v*. The strings u and v are binary notations for
some numbers that uniquely define the content of work tape. The symbol observed
by the work tape head is exactly the parity of u (0if uiseven and 1 otherwise). If
the work tape head changes 0 to 1 (respectively 1t00) thenu:=u+1
(respectively u:= u - 1) and v does not change. If the work tape head movesto the
right then u:= 2u + 8 and v:= (v - 3)/2 where & isthe parity of v. If the work tape
head moves to the | ft then u:= (u- 8)/2 and v:= 2v + 6 where 6 isthe parity of u.

Since the length of thework tape is bounded by a multiple of log n, the numbers
u and v are bounded by some n®. Thus,

u=Yiqan and v=Yipn

where o;, i < nfor eachi. The desired two-way multihead automaton A rep-
resentsu and v by 2k heads on the universe tape. Using afew auxiliary heads,
Ais ableto compute the parities of u, v and to perform the operationsu:=u + 1,
u=u-I1, u=2u+ parity(v), vi=[v- parity(v)]/2, etc. mentioned above.

Some internal states of A code theinternal states of M, in addition A has
auxiliary internal states. When Aisin theinternal state ' coding an internal
state g of M, the configuration of A codes a configuration of M; if qis existentia
(respectively universal) then soisq’. Theauxiliary interna satesof A arede
terminigtic. If M gartsin theinitia configuration Cy and goes through subsequent
configurations C;, C,, etc. then A startsin theinitial configuration coding C,,
goes through a series of configurations with auxiliary interna states and arrives
to the configuration coding C;, goes through a series of configurationswith
auxiliary internal states and arrives to the configuration coding C,, etc. A con
figuration of A isaccepting if and only if it codes an accepting configuration of
M. It is easy to see that A accepts agiven structure if and only if M accepts
It. [ ]

Cordlary A global relation is polynomial timerecognizableif and only if itis
recognizable by an aternating two-way multihead finite automaton.

Proof Polynomial time equals dternating log-space (13). L]
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Let us consider more closely the computation of atwo-way multihead automaton
A that recognizes aglobal relation p. A can be deterministic, nondeterministic or
alternating. Represent the position of a head h on atape of length n° by p-tuple
Xno, - - - » Xnp-1) With theintended interpretation Y x,*n". Herenisthe length of the
universe tape and each x;,; isanatural number <n. Further, represent thej-th
internal state of the automaton by ag-tupleys, . . ., y; where g isthe number of
internal states, y; =1 andy, =0for i #j. Thusthereisanr such that every
configuration of A isrepresented by an r-tuple of natural numbers <n. Without
loss of generality, we may assume that A has a unique accepting configuration and
that both in theinitial and in the accepting configuration of A dl headsare in the
leftmost positions. Then the r-tuples Initia and Final, representing theinitial and
the final configurationsrespectively, consist of zeros and ones.

Clam Thereisan FO + < formula Next satisfying the following. Let Sbea
structure in the domain of p, w be atuple of dements of Swhose length equalsthe
arity of p, and x, y ber-tuples of elements of the universe of S. Then Next(w,x, y)
holdsin Sif and only if x, y represent configurations of A oninputs(S w) and Ais
able to go from configuration x to configuration y in one step.

Proof Thedesired formulaNext isa conjunction where each conjunct describes
(in the obvious way) one instruction of A. (The variables w appear since there
are reading heads on the corresponding input tapes.) -

Remark TheformulaNext isespecially smpleif one uses the successor function
(rather than order) and individua constants 0 and End. If the universeis{0, ...,
n-1} then Endisinterpreted as n- 1. To make the successor function total,
define Successor(End) = 0 or Successor(End) = End.

In therest of Appendix, aglobal function isapartial a-global function of type
Universe® — Universe® for some o, g, p; such global function assignsto each
o-sructure S ap-ary ¢-coary operation on the universe of S, Two-way multihead
automata were defined as Turing machines without working tapes. They may have
output tapes however.

Theorem 1.21 A global function is computable by a deterministic log-space
bounded Turing machineif and only if it is computabl e by a determinigtic two-
way multihead automaton.

Proof Essentially the same proof as that of Theorem 1.20. If the smulated
Turing machine M writes on an output tape in a configuration x then the
simulating automaton A does the samein the configuration that codes x. (]
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