
www.manaraa.com

Chapter 1

Logic and the Challenge of Computer Science*

YURI GUREVICH†

Abstract—Nowadays computer science is surpassing mathematics as the primary
field of logic applications, but logic is not tuned properly to the new role. In
particular, classical logic is preoccupied mostly with infinite static structures
whereas many objects of interest in computer science are dynamic objects with
bounded resources. This chapter consists of two independent parts. The first part is
devoted to finite model theory; it is mostly a survey of logics tailored for
computational complexity. The second part is devoted to dynamic structures with
bounded resources. In particular, we use dynamic structures with bounded
resources to model Pascal.

INTRODUCTION

These days computer science is characterized by an explosive growth in activities
intimately related to logic. Consider for example formal languages. For years
formal languages were in the private domain of logicians. But what formal
language is most popular today? Is it a Hilbert type predicate calculus or the
Genzen sequent calculus? Neither. The most popular formal languages of today
are programming languages. Another kind of popular formal languages are da-
tabase query languages. Some other formal languages emerge in artificial intel-
ligence like languages for knowledge representation. Old discussions on names,
denotations, types, etc. are suddenly revitalized to unprecedented magnitude.

 *Supported in part by NSF grants MCS 83-01022 and DCR 8503275.

 †Electrical Engineering and Computer Science Department, The University of Michigan, Ann Arbor,
MI 48109-2122.

 Copyright© 1988 Computer Science Press, Inc.

 1

www.manaraa.com

2 Logic and the Challenge of Computer Science

 The work on axiomatic semantics, logic programming and verification is related
to classical proof theory; the work on computational complexity is related to the
classical theory of algorithms. Even propositional logic is not left untouched by
developments in computer science; for almost any number k between 3 and 20,
there is a commercial logic circuit simulator based on k-valued logic (41).

 This is altogether good news for logicians. Logic grows more relevant to
computer science than any other part of mathematics. But the new applications
call, we believe, for new developments in logic proper. First-order predicate
calculus and its usual generalizations are not sufficient to support the new ap-
plications. On the other hand, the new developments will most probably build on
existing achievements of logic. In this connection it is worth trying to understand
what made classical mathematical logic so successful.

 Even though logic is an ancient subject, the origins of modern mathematical
logic are closely related to the discovery of paradoxes and the subsequent crisis in
the foundations of mathematics (47). In 1930 came the triumph of Gödel’s
completeness theorem. The syntax of first-order predicate calculus and its se-
mantics were proven to match perfectly. In addition first-order logic was re-
strictive enough to avoid paradoxes and expressive enough to provide a basis for
Zermelo-Fraenkel set theory and resolve this way, to a large extent, the
foundational crisis. This perfect match of syntax and semantics together with a
reasonable expressive power made first-order logic an invaluable tool and a source
of innumerable generalizations.

 Extremely important features of first-order logic are a formal language and a
clear notion of models. The models are so-called first-order structures or, simply,
structures. (Some people object to the term "first-order structure" on the ground
that logic is first-order rather than structures. This is a good point. But some
structures are not first-order, topological spaces for example; and we all know
exactly what first-order structures are.) This familiar pattern—a formal language
with well-defined models—persists through familiar generalizations of first-order
logic.

 Let us mention another interesting feature of first-order logic. Even though a
consistent first-order theory has usually a multitude of models, the theory itself
does not refer directly to different models; it "speaks" about "the" model of
discourse.

 Classical logic facilitated numerous and impressive achievements. Let us men-
tion only the Church-Turing thesis and the Gödel-Cohen resolution of the con-
tinuum hypothesis. It seems that we (the logicians) were somewhat hypnotized by
the success of classical systems. We used first-order logic where it fits well and
where it fits not so well. We went on working on computability without paying
adequate attention to feasibility. One seemingly obvious but nevertheless
important lesson is that different applications may require formalizations of
different kinds. It is necessary to "listen" to the subject in order to come up with
the right formalization. (We philosophized on this topic in [30].)

www.manaraa.com

Introduction 3

 An important feature of many computer science objects is finiteness. Relational
databases constitute an especially important example. Finiteness does not seem to
be such a great novelty in classical logic. Nevertheless it poses a nontrivial
challenge. Being so closely related to foundations of mathematics, classical logic
is preoccupied with infinity. Many famous theorems collapse when only finite
structures are allowed; among them are Gödel’s Completeness Theorem, Craig's
Interpolation Theorem, Bern's Definability Theorem and the Substructure Pres-
ervation Theorem (29).

 Variants of first-order logic serve as standard relational query languages (15,
67), but the expressive power of first-order logic is not sufficient for many
purposes (2). On the other hand, second-order logic is overly expressive. It
expresses queries that are too hard to compute. Even existential monadic second-
order formulas can express NP complete queries. Of course, the notion of what is
hard may change from one application to another. One idea is to fix a reasonable
complexity class, like polynomial time, and to devise an intermediate logic that
"captures" this complexity class i.e. expresses exactly the queries of that com-
plexity. The idea happens to be realizable to an extent. The pioneering papers
include those of Aho and Ullman (2), Chandra and Harel (12b), Fagin (20),
Immerman (44), and Vardi (68). In particular, Immerman and Vardi proved that,
in the presence of linear order, the least-fixed-point extension of first-order logic
captures polynomial time. The program of designing logics to capture complexity
classes was clearly spelled out in (45) where Immerman captured log-space and a
number of other natural complexity classes. We have written on finite model
theory and logic tailored for complexity in different places; see in particular (29).

 Part 1 (Sections 1-9) of this chapter is devoted to finite model theory; it is mostly
a subjective survey of logics tailored for computational complexity. Section 1
contains provisos and definitions that are used throughout Part 1. In particular, the
notions of global relations and global functions are introduced; these notions
provide convenient semantics for complexity tailored logics. In Sections 2, 3, 4
and 6 we consider different extensions of first-order logic by additional constructs;
in the presence of linear order the extended logics capture natural complexity
classes. In Section 5 we consider two logics with an emphasis on functions rather
than predicates; a linear order is built in, and the logics capture log-space and
polynomial time respectively. Section 7 is devoted to those properties of structures
which do not depend on presentation. In Section 8, some evidence is given that
certain familiar complexity classes cannot be captured by any logic. Circuit
definability and topology on finite sets are briefly discussed in Section 9.

Remark Several relevant issues are left out in this survey. In particular, we do
not discuss derivability in first-order predicate calculus. The questions of
expressibility and derivability are quite different. For example, no first-order

www.manaraa.com

4 Logic and the Challenge of Computer Science

formula φ expresses on finite graphs that (x, y) belongs to the transitive closure of
the edge relation E. This is well known (21, 23, 29) and remains true even if φ is
allowed to use additional predicate symbols: just consider the case when all
additional relations are trivial. On the other hand, the first-order formula

 [�uv(Euv → Tuv) & �uvw(Euv & Tvw → Tuw)] → T(x,y)

is derivable from the diagram of an arbitrary finite graph if and only if (x, y)
belongs to the transitive closure of the edge relation E.

 Another important feature of many computer science structures, which is harder
to swallow, is their dynamic character. Mathematical structures (graphs, groups,
topological spaces, etc.) do not change in time whereas computer science objects
(databases, machines) often do. Considering time as a new dimension, a
mathematician turns a dynamic situation into a static one. Complexity consid-
erations may make such a transformation inadvisable in computer science (see
Section 10 in this connection).

 In Part 2 of this chapter we generalize the static structures of mathematical logic
to dynamic structures. We are especially interested in dynamic structures with
bounded resources. In Section 10, among other things, we discuss the adaptation
of Turing's thesis to the case of machines with bounded resources. In Section 11,
on the example of Pascal, we demonstrate an approach to semantics based on
dynamic structures.

 There are still mathematicians that consider computer science a lower subject.
There are former logicians that work now in computer science or computer
applications and consider logic not very relevant to their new occupation. We
happen to think that computer science badly needs what logicians are supposed to
do best: logic. The situation seems to us reminiscent of that in the beginning of the
century. Again we face most basic questions like what is the right logic and even
what are the right structures.

Acknowledgements. This chapter grew out of my part in the Course on Com-
putation Theory in the International Center for Mechanical Sciences, Udine, Italy
in September-October 1984. I am happy to thank the organizer—Dr. Egon
Börger—and the Center for the invitation, and the listeners for their attention,
good will and hard work. Special thanks are due to Dr. Klaus Ambos-Spies who
faithfully recorded my lectures. An edited version of the lectures was published as
a technical report (32). I am thankful to John Holland for his comments on the
report. In Summer and Fall of 1986, the report was updated; in particular, Section
10 was enhanced and Section 11 was added. These two sections carry their own
acknowledgements, but I am only too glad to repeat here that I am thankful to Kit
Fine, Bernie Galler, David Gries, Albert Meyer, and Jim Morris. Finally, it gives
me special pleasure to thank Andreas Blass for his numerous comments and many
clarifying enjoyable discussions.

www.manaraa.com

Global Relations and Functions 5

PART 1. FINITE MODEL THEORY

SECTION 1. GLOBAL RELATIONS AND FUNCTIONS

This section is devoted primarily to the notions of global relations and global
functions which will be used to provide semantics for numerous logics. The
section contains a number of definitions, two principles and one proviso that will
be widely used throughout Part 1.

The notions of global relations and global functions were introduced in (28). To
motivate the definition of a global relation, let us consider a formula φ(x,y), with
two free individual variables, in the first-order language of graphs. What is the
meaning of φ(x,y)? Is it a binary relation? Well, it is and it is not. Given a graph,
one can interpret φ(x,y) as a binary relation. In general, φ(x,y) can be interpreted as
a function that assigns a binary relation to each graph. Such functions will be
called global relations.

Definition 1.1 Let K be a class of first-order structures of some signature
(vocabulary) σ. An r-ary K-global relation ρ assigns to each structure S in K an r-
ary relation ρs on S; the relation ρs is the specialization of ρ to S. The signature σ is
the signature of ρ. If K is the class of all permissible σ-structures we say that p is
σ-global.

 Right now all structures are permissible. Later we will permit only finite
structures satisfying some additional restrictions.

 The notion of global relations generalizes Tarski's notion of sentential functions
(62). Sentential functions are global relations of arity zero. In a sense, the notion of
global relations reduces to the notion of sentential functions: an r-ary global
relation of signature σ can be viewed as a sentential function whose signature is an
extension of σ by r additional individual constants. But it is more convenient to
work directly with global relations.

 Tarski's semantics for first-order logic can be conveniently formulated in terms
of global relations (disallow function symbols for a moment). The meaning of a
first-order formula φ with r free individual variables is a σ-global r-ary relation
where σ is the signature (vocabulary) of φ, i.e., the set of predicate symbols in φ.
The meaning is defined by an obvious induction.

Remark There is one relatively minor issue that we are going to ignore. Different
orderings of the free individual variables of a first-order formula give different
global relations. One way to resolve this difficulty is to stick to the lexicographical
ordering of individual variables. Another possibility is to use a more explicit
notation like {(x1 . . . , xn): φ}.

www.manaraa.com

6 Logic and the Challenge of Computer Science

Examples of global relations:

1. Let GRAPH be the class of finite graphs seen as structures with exactly one
relation which is binary, irreflexive and symmetric. The following GRAPH-
global relations are of arities 0, 1, and 2, respectively:

 The graph is connected,
 Node x has at most log n neighbors where n is the number of nodes,
 There is a path from node x to node y.

2. Let GROUP be the class of finite groups. The following GROUP-global
relations are of arities 0,1, and 3, respectively:

 The group is abelian,
 The index of the subgroup, generated by element x, is at most log n where
 n is the number of elements,
 The subgroup generated by elements x and y contains element z.

Definition 1.2 Let K be a class of structures of some signature σ A K-global
function f of type (Universe)r → Universe assigns to each structure S in K an r-ary
function f S that, given an r-tuple of elements of S, produces an element of S. The
signature σ is the signature of f.

 First-order terms denote global functions. In the obvious way, global relations
and global functions of types (Universe)r → Universe provide semantics for first-
order logic with function symbols. (View individual constants as zero-ary
functions.)

 We will keep the notion of global functions informal (and very general) and will
deal only with global functions of specific types. In particular, an r-ary global
relation is a global function of type Universer → Bool where Bool is the set of the
two truth values. A K-global function f of type (Universe)p → (Universe)q assigns
to each S in K a function f S that, given a p-tuple of elements of S, produces a q-
tuple of elements of S; we say that f, as well as each specialization f S of f, is p-ary
and q-coary. The notion of a K-global partial function f of type (Universe)p →
(Universe)q is an obvious generalization; f itself is total (defined on the whole K)
but its specializations may be partial. Other possible types of global function
include

 [(Universe)p → Bool] → [(Universe)q → Bool], and

 [(Universe)p × (Power-Set(Universe))q] → Bool.

 The latter is the type of second-order formulas with p free individual variables
and q free predicate variables that are all monadic. The meaning of any second-
order formula is a global function of an appropriate type.

www.manaraa.com

Global Relations and Functions 7

The Localization Principle. Think about global relations and global functions as
relations and functions (of appropriate types) on the structure of discourse.

 The localization principle allows us to speak about the negation of a given global
relation, about the transitive closure of a given binary global relation, about
composition of unary global functions, etc.

Proviso. In Part 1,

1. any structure is a finite first-order structure of finite signature,

2. the universe of any structure is an initial segment of natural numbers,

3. any class of structures consists of structures of the same signature, and

4. the domain of any global relation comprises all structures of some signature that
are permitted in the context, unless the contrary is said explicitly.

 The proviso allows us to associate a decision problem with each global relation.

Definition 1.3 Let p be an r-ary K-global relation. An instance of the decision

problem for ρ is a pair 〈S, x〉 where S belongs to K and x is an r-tuple of
elements of S; the corresponding question is whether ρ(x) holds in S (in other
words, whether x belongs to ρs).

 However, we need to agree on a standard way to represent structures as inputs
for computing devices. To simplify the exposition, we choose to represent struc-
tures by means of several input tapes. Suppose that S is a structure of cardinality n.
One input tape, called the universe tape, represents the universe {0, 1, . . . , n — 1}
of S; it is of length n, its end-cells are specially marked but the intermediate cells
are all blank. (Ignore the case of n = 1.) If R is a basic r-ary relation of S or the
graph of an (r - l)-ary basic function of S then R is represented by a special tape of
length nr; for all elements xo, . . . , xr-1, the cell number ∑xi • n

i contains 1 if
R(xr-1, . . . , xq) holds, and 0 otherwise.

The Globalization Principle. View relations and functions under discussion as the
specializations of global relations and global functions to the structure of
discourse.

 The globalization principle can be applied only if the context uniquely defines
appropriate relations or functions on all relevant structures. For example, suppose
that a discussion involves the transitive closure R of a basic relation of the
structure of discourse. Then the globalization principle allows us to speak about R
being polynomial time recognizable.

www.manaraa.com

8 Logic and the Challenge of Computer Science

 Fagin proved (20) that existential second-order logic captures nondeterministic
polynomial time.

Theorem 1.1 A global relation is definable by an existential second-order
formula if and only if it is recognizable by a polynomial time bounded nonde-
terministic Turing machine. ■

 The proof of Theorem 1.1 may be found in the third section of Börger's
contribution to this volume (Chapter 2).

 It is easy to see that every first-order definable global relation is log-space (and
therefore polynomial time) recognizable. The converse is not true. For example,
the global relation "The cardinality of the universe is even" is log-space
recognizable but not first-order definable. As we will see below, some natural
extensions of first-order logic express exactly log-space (respectively polynomial
time) recognizable global relations.

Definition 1.4 Let L be first-order logic or an extension of first-order logic by
additional logical operators. (A number of such extensions will be defined in
subsequent sections.) L + < is the extension of L by means of a logical constant <
(just as first-order logic with equality is the extension of first-order logic by means
of a logical constant =). The logical constant < is interpreted on each structure S
as the restriction of the usual order of natural numbers to the universe of S.

SECTION 2. TRANSITIVE CLOSURES

This section is devoted to transitive closure logics. We start our treatment of
different extensions of first-order logic with transitive closure logics because of
their relative simplicity. The use of two-way multihead automata will allow us to
simplify the proofs related to capturing complexity classes.

 The localization principle implicitly introduces the transitive closure of a given
binary global relation. The transitive closure of a first-order expressible binary
global relation may be not first-order expressible; see (2, 23, 29). In this con-
nection, Aho and Ullman (2) suggested extending the relational calculus, a
standard relational query language and a variant of first-order logic, by a powerful
least fixed point operator. Immerman (45) turned the transitive closure itself into a
logical operator TC. He defined also a deterministic transitive closure operator
DTC, and proved that the corresponding extensions FO + TC + < and FO + DTC +
< of first-order logic capture natural complexity classes. We prove here some of
Immerman’s results.

www.manaraa.com

Transitive Closures 9

Definition 1.5 If R is a relation of an even arity 2r over some universe U then the
relation {(x,y): tuples x,y belong to Ur, and the concatenation x*y belongs to R} is
the binary companion BC(R) of R. The transitive closure of a 2r-ary relation
relation R is the 2r-ary relation TC(R) (over the same universe) whose binary
companion is the transitive closure of BC(R). With respect to the localization
principle, the transitive closure of a 2r-ary global relation ρ is the global relation
TC(ρ) such that the domain of TC(ρ) equals that of ρ and for each structure S in
the domain of ρ, the specialization of TC(ρ) to S is the transitive closure of ρs.

 It will be convenient for us in this section to play down the distinction between
relations of even arity and their binary companions.

Lemma 1.1 If a 2r-ary global relation ρ is nondeterministically log-space rec-
ognizable (i.e. if the decision problem for ρ is solvable in nondeterministic log-
space) then so is TC(ρ).

Proof Let S be a structure in the domain of ρ, R be the specialization of ρ to S,
and a,b be r-tuples of elements of S. The desired algorithm is:

 begin

 x := a;

 repeat
 guess y;
 if (x,y) ε R then x := y

 until x = b;
 halt with output YES
 end. ■

 Notice the use of the globalization principle in the exposition of the proof.

 We define a logic FO + TC. The syntax of FO + TC is the extension of the
syntax of first-order logic by:

Transitive Closure Formation Rule. Let r be a positive integer and φ(x,y) be a
well-formed formula where x and y are r-tuples of individual variables such that
the 2r variables are distinct. Then TCx,yφ(x,y) is a well-formed predicate, and if s,t
are r-tuples of well-formed terms then [TCx,yφ(x,y)](s,t) is a well-formed formula.

 TCx,y binds the 2r individual variables in the new predicate (but the additional
occurrences of these variables in the tail of a formula [TCx,yφ(x,y)](x,y) are free).
φ(x,y) may have additional free individual variables. A more explicit

www.manaraa.com

10 Logic and the Challenge of Computer Science

notation for the new predicate is TQx,y φ(w,x,y) where w is the list of those
additional variables. The new formula [TCx,yφ(w,x,y)](s,t) means (on each relevant
structure) that (s, t) belongs to the transitive closure of the relation Rw = {(x,y):
φ(w,x,y)}. The global function semantics for first-order logic naturally extends to
logic FO + TC; again the meaning of a formula with r free individual variables is a
global r-ary relation.

 The transitive closure formation rule introduces well-formed predicates in
addition to well-formed formulas. The only well-formed predicates in first-order
logic are predicate symbols. The transitive closure formation rule is essentially a
predicate formation rule. The new predicate is then used to form new formulas.
But it is possible to deal only with formulas of course.

Remark Immerman (45) seems to define directly a new formula TC[φ(x,y)]
which is a simpler notation for [TCx,yφ(x,y)](x,y). Unfortunately, the simpler
notation is somewhat deficient. Try to express [TCx,yP(x,y,x)](x,x) or
[TCx,yP(x,y,x)](fx,x) in the simplified notation.

 Positive and negative occurrences of a predicate in a formula are defined by
induction. In particular, every positive (respectively negative) occurrence of a
predicate in a formula φ remains so in any formula [TC... φ](. . .). Say that a
formula φ is positive with respect to TC if every occurrence of every predicate
TC...ψ in φ is positive.

 In Section 1, we spoke about extensions L + < of logics L by means of the built-
in linear order. In particular, we have an extension FO + TC + < of FO + TC.
Viewing 0 and 1 as logical constants yields a further extension FO + TC + < +
{0, 1}.

Theorem 1.2 Let ρ be a global relation. The following are equivalent:

1. ρ is nondeterministic log-space recognizable,

2. ρ is definable by an FO + TC + < formula φ which is positive with respect to
TC.

3. ρ is definable by a FO + TC + < + {0,1} formula [TCx,y ψ(x,y)](s,t) where s,t are
sequences of zeros and ones, and ψ is first-order.

Proof (3) → (2). The constants 0 and 1 are definable in FO + <.

 (2) → (1). Without loss of generality, one may suppose that only first-order
subformulas can be negated in the defining formula φ: use the usual duality laws
for first-order logic. Then an easy induction shows that every subformula of the
defining formula is nondeterministically log-space recognizable. The case of TC
is taken care of in Lemma 1.1.

www.manaraa.com

 Transitive Closures 11

 To prove the implication (1) → (3), suppose that ρ is recognizable in non-
deterministic log-space. According to the Appendix, there is a nondeterministic
two-way multihead automaton that recognizes ρ. Let formula Next(w,x,y) and
tuples Initial, Final be as in the Appendix. Then the desired FO + TC + < + {0, 1}
formula is

 [TCx,y Next(w,x,y)](Initial,Final) ■

Definition 1.6 The deterministic version of a binary relation R is the relation
{(x,y): (x,y)εR and there is no z ≠ y with (x,z)εR}. The deterministic version of a
2r-ary relation R is the 2r-ary relation whose binary companion is the
deterministic version of BC(R). The deterministic transitive closure DTC(R) of a
2r-ary relation R is the transitive closure of the deterministic version of R. With
respect to the localization principle, the deterministic transitive closure of a 2r-ary
global relation ρ is the global relation DTC(ρ) such that the domain of DTC(ρ)
equals that of ρ and for each structure S in the domain of ρ, the specialization of
DTC(ρ) to S is the deterministic transitive closure of ρs.

Lemma 1.2 If a 2r-ary global relation ρ is log-space recognizable then so is
DTC(ρ).

Proof Let S range over the domain of ρ, U be the universe of the structure S,
R = ρs, and a,b be r-tuples of elements of U. We need an algorithm which, given
S and (a,b), will decide whether (a,b) belongs to DTC(R).

 The deterministic version of R is the graph of some partial function f on Ur.
Given x in Ur, one can find in log-space whether there is some y with (x,y)εR
and whether there are different y,z with (x,y)εR and (x,z)εR .This yields a
log-space algorithm which, given x, computes fx or UNDEFINED. Given a and
b, compute f ka for k = 1, 2, etc. and halt when b comes along or UNDEFINED
is returned or k reaches n. If b has come along then return YES, otherwise return
NO. ■

 Again, the globalization principle was used to simplify the exposition of the
proof.

 The definition of an extension FO + DTC of first-order logic is similar to the
definition of FO + TC. Just change 'TC" to "DTC," and "transitive closure" to
"deterministic transitive closure."

Theorem 1.3 Let ρ be a global relation. The following are equivalent:

1. ρ is log-space recognizable,

2. ρ is definable in FO + DTC + <,

www.manaraa.com

12 Logic and the Challenge of Computer Science

3. ρ is definable by a FO + DTC + < + {0,1} formula [DTCx,y ψ(x,y)](s,t) where s,t
are sequences of zeros and ones, and ψ is first-order.

Proof Similar to that of Theorem 1.2. ■

Since the deterministic version of a given relation is first-order definable, FO +
DTC can be seen as a sublogic of FO + TC.

SECTION 3. LEAST FIXED POINTS

In this section we define the extension FO + LFP of first-order logic by the least
fixed point operator (2, 12) and prove Immerman and Vardi's theorem that FO +
LFP + < captures polynomial time (44, 68). Again, the use of two-way multihead
automata will allow certain simplification.

Definition 1.7 Let F be a unary operation on a partially ordered set. If Fx = x then x

is a fixed point of F. If Fx = x and �y(Fy = y → x ≤ y) then x is the least fixed
point LFP(F) of F. If Fx ≤ Fy for all x ≤ y then F is monotone.

Definition 1.8 A partially ordered set is complete if every subset of it has a least
upper bound and a greatest lower bound.

 For example, the set of relations of a fixed arity on a fixed nonempty set is a
complete partially ordered set with respect to inclusion. The following fact is well-
known.

Fact Let D be a finite (or infinite complete) partially ordered set with a least
element. A monotone unary operation F on D has a least fixed point.

Proof Let g0 = min(D) and each g(α +1) = F(gα). (In the case of infinite
D), let additionally gα = sup{gβ: (β < α} for limit α.) By monotonicity, the
function g is increasing (though not necessarily strictly increasing). Hence, there
is α with gα. = g(α + 1); let γ = min{α: gα = g(α + 1)}. Obviously, gγ is a
fixed point of F. Given a fixed point y of F, prove by induction that each gα ≤ y.
Hence gγ = LFP(F). ■

 The localization principle gives:

Definition 1.9 Let F be a σ-global function of type

 [Power-Set(Universer)] → [Power-Set(Universer)]

so that each specification of F takes an r-ary relation to an r-ary relation. F is
monotone if every specialization of F is so. If F is monotone then the least fixed

www.manaraa.com

 Least Fixed Points 13

point LFP(F) of F is the σ-global r-ary relation that assigns to each a-structure S
the least fixed point of FS. F is polynomial time computable if there is a
polynomial time algorithm that, given a σ-structure S and an r-ary relation P on S,
computes FS(P).

Lemma 1.3 Let F be a monotone σ-global function of type

 [Power-Set(Universer)] → [Power-Set(Universer)].

If F is polynomial time computable then LFP(F) is polynomial time recognizable.

Proof Given a structure S and an r-tuple x of elements of S, compute P0
= Ø

pl = FS(P0), P2 = FS(P1), etc. until you come across Pm + l = Pm. Then check
whether x belongs to Pm. Since m ≤ |S|r, this algorithm works in polynomial
time. ■

 The syntax of logic FO + LFP is the result of augmenting the syntax of first-
order logic by the following formation rule. (If all predicate symbols of first-order
logic are treated as predicate constants then first-order logic should be augmented
by predicate variables first.)

Least Fixed Point Formation Rule. Let r be a positive integer, x be an r-tuple
x1, . . . , xr of individual variables, P be an r-ary predicate variable, and φ(P, x) be
a well-formed formula. If φ(P,x) is positive in P (i.e. all free occurrences of P in
φ(P,x) are positive) then LFPP; x φ(P,x) is a well-formed predicate and, for every r-
tuple t of well-formed terms, [LFPP; x φ(P,x)](t) is a well-formed formula.

 LFPP; x binds the predicate variable P and the individual variables x1, . . . , xr (but
of course additional occurrences of these individual variables in the tails of
formulas [LFPP; x φ(P,x)](t) are free). If Q is a predicate variable different from P
then every positive (respectively, negative) occurrence of Q in φ(P,x) remains
positive (respectively, negative) in the new predicate and the new formulas.

Remark A simplified notation LFPPφ(P,x) for [LFPP;xφ(P,x)](x) is deficient: just
try to express [LFPP; xφ(P,x)](t) in the simplified notation.

 To be on the safe side, let us emphasize that logic FO + LFP allows interleaving
LFP with propositional connectives (including negation) and quantifiers; in
particular, one can negate an LFP formula then use the LFP formation rule again,
etc.

www.manaraa.com

14 Logic and the Challenge of Computer Science

 The formula φ(P,x) may have additional free individual variables; let w be the
list of the additional individual variables. The meaning of the predicate
LFPP; xφ(P,w,x) is the least fixed point of the operator Fw(P) = {x: φ(P,w,x)} on
the set of r-ary relations ordered by inclusion. Since the formula φ(P,w,x) is
positive in P, the operator Fw is monotone and therefore has a least fixed point.
The global function semantics for first-order logic naturally extends to FO + LFP.

Theorem 1.4 Let ρ be a global relation. The following are equivalent:

1. ρ is polynomial time recognizable,

2. ρ is definable in logic FO + LFP + <,

3. ρ is definable by a FO + LFP + < + {0,1} formula [LFPP;xψ(P,x)](t) where ψ is
first-order and t a sequence of zeros and ones.

Proof The implications (3) → (2) and (2) → (1) are obvious. To prove the im-
plication (1) → (3), suppose that ρ is polynomial time recognizable. According to
the Appendix, there is an alternating two-way multihead finite automaton that
recognizes ρ. Let the formula Next(w,x,y) and the tuples Initial, Final be as in the
Appendix. It is easy to write down first-order formulas Existential(x) and
Universal (x) asserting that the internal state of the automaton in the given con-
figuration x is respectively existential or universal. Let

 Accepted(w,_) = LFPP;x[x = Final, or

 Universal (x) & �y(Next(w,x,y) → P(y)), or

 Existential(x) & �yNext(w,x,y) & P(y))].

 The desired FO + LFP formula is Accepted(w, Initial). ■

SECTION 4. BRANCHING QUANTIFIERS

We turn now to an extension of first-order logic by branching (or Henkin)
quantifiers whose introduction was motivated by considerations quite distant from
computer science (42).

Let us start with an example. The expression

means that for all u and x there are v and y such that v depends only on u, y
depends only on x, and φ(u,,v, x,y) holds. In other words, there are functions V(u)
and Y(x) such that φ(u,V(u),x,Y(x)) holds.

www.manaraa.com

Branching Quantifiers 15

 In general, a branching quantifier is a partially ordered set of expressions �x and

�y; an existentially quantified variable y depends upon the universally quantified

variables x such that �x precedes �y in the partial order (69).

Theorem 1.5 For any global relation ρ the following are equivalent:

1. ρ is NP,

2. ρ is expressible by an existential second-order formula,

3. ρ is expressible by a formula Qφ where Q is a branching quantifier and φ is a
first-order formula.

Proof The equivalence (1) ↔ (2) is Theorem 1.1 in §1, the implication (3) →
(2) is obvious, the implication (2) → (3) is proved in (69). ■

 In the rest of the section we describe a few results from (8). The only novelty is
the direct proof of Theorem 1.8 below. A branching quantifier Q will be called
mighty if there is a first-order formula φ such that the global relation Qφ is NP-
complete under polynomial time reductions.

Theorem 1.6 The quantifier (1.1) is mighty.

Proof The idea is to express 3-colorability of a graph with individual constants 0,
1, and 2. The desired φ is the conjunction of the formulas:

 u = x → v = y,

 v = 0 or v = 1 or v = 2,

 Edge(u, x) → v ≠ y. ■

 Note that, in the proof of Theorem 1.6, the existentially quantified variables
range, in effect, over {0,1,2}. Let α, β, γ range over {0,1}, and µ range over
{0,1,2}.

Theorem 1.7 The quantifiers

 ■

www.manaraa.com

16 Logic and the Challenge of Computer Science

 In the rest of this section, x and y are tuples of individual variables. The
branching quantifier

will be called the narrow Henkin quantifiers and denoted NH(x,α; y,β). Without
loss of generality, x and y always have the same length: just pad the shorter tuple.
Let ENH(x,α; y,β) be the equality bound version of NH(x,α; y,β):

 NH(x,α; y,β)[(x = y → α = β) & φ(x, y, α, β)].

ENH(x,α; y,β) asserts (in each relevant structure) the existence of a function f from
the universe to {0, 1} such that for all x and y, φ(x,y,f(x),f(y)) holds. In the rest of
this section, we assume that α and β range over the truth-values rather than over
{0,1}. Then ENH(x,α; y,β)φ(x, y, α, β) is equivalent to the second-order formula

 �R�xyφ(x,y,R(x),R(y)).

An arbitrary NH(x,α; y,β)φ(x, y, α, β) is equivalent to

 ENH(xu,α; yv,β)[(u = 0 & v = 1) → φ(x, y, α, β)].

 Let FO + NH be the extension of first-order logic by narrow Henkin quantifiers.
Positive and negative occurrences of a subformula ψ in a formula φ are defined by
the obvious induction on φ; in particular, any positive (respectively negative)
occurrence of ψ in φ(u, v, γ, δ) remains so in NH(x,α; y,β)φ(x, y, α, β). We will
say that a formula φ is positive with respect to NH if every occurrence of every
subformula of the form NH(x,α; y,β)ψ(x, y, α, β) in φ is positive. Abbreviate
"nondeterministic log-space" as "Nlog-space."

Theorem 1.8 For a global relation ρ the following are equivalent:

1. ρ is co-Nlog-space recognizable,

2. ρ is expressible by an FO + NH + < formula which is positive with respect to
NH,

3. ρ is expressible by an FO + NH + < formula ENH(x,α; y,β)φ(x, y, α, β) with a
first-order φ.

Proof (1) → (3). Suppose that ρ is co-Nlog-space recognizable, and let ρ' be the
complement of ρ (so that on each relevant structure, the specification of ρ' is the
complement of the specification of ρ). According to the Appendix, there is a two-
way multihead nondeterministic finite automaton that recognizes ρ '. Let formula
Next(w,x,y) and tuples Initial and Final be as in the Appendix. The desired formula
expresses the nonacceptance by the automaton:

www.manaraa.com

 ENH(x,α; y,β)[(x = Initial → α = 1) &

 ((α = 1 & Next(w,x,y)) → β = 1) &

 (y = Final → β = 0)].

 The implication (3) → (2) is trivial.

 (2) → (l). Without loss of generality, we may suppose that only first-order
subformulas of the defining formula can be negated: use the usual duality laws of
first-order logic. By induction, we will prove that every subformula of the defining
formula is co-Nlog-space recognizable. It suffices to prove that if φ(x, y, α, β) is
co-Nlog-space then so is ψ = ENH(x,α; y,β)φ(x, y, α, β). Thus, suppose that M' is a
log-space bounded nondeterministic Turing machine that recognizes the negation
φ'(x, y, α, β) of φ(x, y, α, β). We have

 ψ ↔ �R �x�y (x,y,Rx,Ry) ↔ �R �x�y not φ'(x,y,Rx,Ry) ↔

 �R Πx,y not ∑φ'(x, y, α, β) (Rx = α) & Ry = β) ↔

 �R Πφ'(x, y, α, β)(Rx ≠ α) & Ry ≠ β).

 Here Πx,y means (in each relevant structure) the conjunction over all values of x
and y. For given values of x and y, ∑φ'(x, y, α, β) means the disjunction over the values
of α and β satisfying φ'(x,y,Rx,Ry). And Πφ'(x, y, α, β) means the conjunction over all
values of x, y, α and β satisfying φ'(x,y,Rx,Ry). For every value a of x, view Ra as
a propositional variable. Then ψ asserts satisfiability of the propositional formula
Πφ'(x, y, α, β)(Rx ≠ α) or Ry ≠ β). Recall that a literal is a propositional variable or the
negation of such.

Fact (49) A conjunction C of binary disjunctions of literals is unsatisfiable if and
only if there are a propositional variable p and a sequence l1 → l2 → . . . → lm →
l1 of literals such that each implication li → li+l as well as the implication lm → l1
is equivalent to a conjunct of C, and both p and the negation of p appear in the
sequence.

Now we are ready to describe a log-space bounded nondeterministic Turing
machine N that recognizes the negation of ψ. Let M be a log-space bounded
nondeterministic Turing machine that recognizes φ'. Step-by-step N guesses a
sequence l1 → l2 → . . . → lm → l1 of literals that witnesses the unsatisfiability of
C = Πφ'(x, y, α, β)(Rx ≠ α) or Ry ≠ β). To check that an implication li → li+l (where
i +1 = 1 if i = m) is equivalent to a conjunct of C, N presents li, in the form
Ra = α, presents li+l in the form Rb ≠ β, and uses M to check φ'(a, b, α, β). ■

Branching Quantifiers

www.manaraa.com

18 Logic and the Challenge of Computer Science

SECTION 5. FUNCTION LOGICS

First-order logic is essentially a logic of relations. It has one function construct:
the composition, and a number of relation constructs: boolean connectives and the
two quantifiers. It allows constructing formulas from terms but not the other way
round. In Sections 2-4 we studied extensions of first-order logic by means of
additional relation constructs. In this section, we turn to logic of functions in the
case when only finite structures are permitted.

 Consider the classical language of functions primitive recursive relative some
given functions (47). Usually, primitive recursive terms are interpreted over the set
of natural numbers. But here we interpret primitive recursive terms as functions
over a nonempty finite initial segment of natural numbers. View the individual
constant 0 as a name of the number zero, view the sign of successor function as a
name of the partial successor function on the universe of discourse, and so on.
Then every primitive recursive term means a global function. We take the liberty
of extending the syntax by a new individual constant End for the last element of
the universe of discourse. It turns out then that a global function is primitive
recursive if and only if it is log-space computable (28). Similarly, a global function
is recursive if and only if it is polynomial time computable (28, 57). This section
recapitulates some of the paper (28). It has also a couple of new elements: a
remark that primitive recursion can be replaced by a WHILE construct, and a
simpler universal recursive schema.

 We start with primitive recursive global functions. The language of primitive
recursive functions will be reformulated in a form that is convenient for our
purposes. In the same time we will extend the language by the individual constant
End.

 According to the proviso of Section 1, the universe of every structure is an initial
segment of natural numbers. In this section, we have three additional provisos:

1. Every structure contains at least two elements. (Alternatively, one may assume
existence of an extra universe Bool = {False, True}.)

2. Individual constants 0, End and a unary function symbol Successor are logical
constants (as equality is a logical constant in first-order logic with equality). In
every structure, 0 denotes the number zero, End denotes the maximal number in
the universe, and Successor denotes the partial function λx(x +1). The three logical
constants will not be counted as members of any signature.

3. A certain (possibly empty) signature σ is fixed. Every structure is a σ-structure.
Every global function is σ-global.

In this section, a function (resp. global function) means a partial function (resp.
partial global function) of type Universep -» Universeq for some none-

www.manaraa.com

Function Logics 19

gative integer p (the arity) and some positive integer q (the coarity). A function of
coarity q > 1 can be seen as a sequence of q functions of coarity 1, but it will be
convenient to deal directly with functions of higher coarity. If t1, . . . , tk are tuples
of elements then (t1, . . . , tk) will denote the concatenation of tuples t1, . . . , tk
rather than a k-tuple of tuples.

With respect to the localization principle, we view global functions as functions on
the structure S of discourse. Let U = {0, . . . , n — 1} be the universe of S. The
value of a nonempty tuple (xk-1, . . . , x1, x 0) of elements of U is the number
∑i<k xi•n

i. If elements of U are seen as digits over the radix n then any nonempty
tuple of elements of U is a positional notation over the radix n for its value.

Definition 1.10 The initial functions are:

1. For every nonnegative p, the constant p-ary functions with values 0 or End.

2. For every positive p, the p-ary p-coary successor function. Given a p-tuple of
value V < np-1, the function produces the p-tuple of value V + 1; it is not defined
on the p-tuple of value np - 1. We will denote the successor of a tuple t as t + 1.

3. For all p ≥ q ≥ 1 and every sequence 1 ≤ i1 ≤ i 2 ≤ . . . ≤ iq ≤ ip, the
corresponding p-ary q-coary projection function. For example, if p = 4, q = 2 and
i1 = 2, i2 - 4 then the projection of (0,1,2,3) is (1,3).

4. The basic σ-functions, and the characteristic functions of basic σ-predicates.
(Individual constants are functions of arity 0 and coarity 1.)

 The composition g(h1(x), . . . , hk(x)) of functions g and h1, . . . , hk is defined in
the obvious way. It is required that arity(h1) = . . . = arity(hk) and arity(g) =
coarity(h1) + . . . + coarity(hk).

 As usual, the primitive recursion schema is the schema

 f(x, Zero) = g(x), f(x,t+1) = h(x,t, f(x, t)) (1.2)

which defines a new function f by means of given functions g and h of the same
coarity. Here Zero is the tuple of zeros of the appropriate length.

Definition 1.11 A global function is primitive recursive if it belongs to the closure
of initial global functions under compositions and primitive recursions. A global
relation is primitive recursive if its characteristic function is so.

Example Let us check that if a 2-coary function f(x) and a 3-coary function g(x)
are primitive recursive then the 5-coary function h(x) = (f(x), g(x)) is primitive
recursive. The 5-ary 5-coary identity function I(y) = y is primitive recursive
because it is an initial projection function. But h(x) = I(f(x), g(x)).

www.manaraa.com

20 Logic and the Challenge of Computer Science

Theorem 1.9 A global function f is primitive recursive if and only if it is log-space
computable.

 We skip the proof of Theorem 1.9, see (28).

 The language of primitive recursive functions can be viewed as a programming
language such that exactly log-space computable global functions can be pro-
grammed. Programming languages of that sort may be useful in applications
where the complexity of computations is bounded a priori. In this connection, let
us mention that the primitive recursion schema can be replaced by more familiar
programming constructs. Consider, for example, the construct

 y := e0; FOR s := el TO e2 DO y := e3 (1.3)

where e0, e1, e2, e3 are expressions (terms) and e0, e1, e2 contain neither s nor y. If
the expressions ei define primitive recursive global functions then (1.3) defines a
primitive recursive global function y = f(. . .). The primitive recursion schema
(1.2) is expressible by means of (1.3):

 y : = g(x); FOR s : = Zero TO t - 1 DO y: = h(x, s, y)].

 Another possible replacement for (1.2) is the construct

 y := e0; WHILE elRe2 DO y := e3 (1.4)

where e0, e1, e2, e3 are expressions, and e0, e1, e2 do not contain y, and R is a
relation =, < or ≤ . (It would be desirable of course to introduce boolean
expressions and to allow an arbitrary boolean expression b instead of elRe2.) If
the expressions ei define primitive recursive global functions then (1.4) defines a
primitive recursive global function y = f(. . .). (1.2) is expressible by means of
(1.4) and a projection:

 (s, y) := (Zero, g(x)); WHILE s < t DO (s, y) := (s + l, h(x,s,y)).

 Consider now the classical Herbrand-Gödel-Kleene equation language of re-
cursive functions (47) extended by the individual constant End. The recursive
definitions are naturally adaptable to global functions; it turns out that a global
function is recursive iff it is polynomial time computable. Moreover, recursive
functions form the closure of primitive recursive functions under a single ad-
ditional recursion schema. Two schemas are specified for this purpose in (28).
Here is a simpler recursion schema for the same purpose:

 f(x, Zero) = gx, f(x,t+ l) = h(x,f(αx,t), f(βx,t)) (1.5)

which defines a new function f by means of given functions g, h, α and β.

Theorem 1.10 A global function is polynomial time computable if and only if it
belongs to the closure of initial primitive recursive global functions by means of
composition and recursion schemas (1.2), (1.5).

www.manaraa.com

Inductive Fixed Points 21

Proof The "if" implication is clear. To prove the "only if" implication, let
RECFUN be the closure of initial primitive recursive global functions by means of
composition and recursion schemas (1.2), (1.5), and let RECREL be the class of
global relations with characteristic functions in RECFUN. The localization
principle allows us to speak about the graph of a global function. It suffices to
prove that an arbitrary polynomial time recognizable global relation ρ belongs to
RECREL because a polynomial time computable global function can be recovered
from its graph by primitive recursive means. According to the Appendix, there is
an alternating two-way multihead automaton that recognizes p; it accepts a
structure S with a tuple w of an appropriate length if and only if ρ(w) holds in S.
Let tuples Initial and Final be as in the Appendix.

 Without loss of generality, every configuration of the automaton has at most two
next configurations. There are primitive recursive functions α and β such that if y
codes a configuration then α(w, y) and β(w, y) code the next configurations; if
there is only one next configuration then α(x, y) = β(w, y). Without loss of
generality, every internal state of A is either existential or universal; the
deterministic states (with only one next configuration) can be counted either way.
We say that a configuration is existential (respectively universal) if the
corresponding internal state is so. There is a primitive recursive function E such
that if y codes an existential (respectively universal) configuration then Ey
equals 0 (respectively 1). Schema (1.5) allows us to define an auxiliary function
Accept(w, y, t):

 Accept(w, y, Zero) = If y = Final then 1 else 0,

 Accept(w, y, t+l) = If Ey = 0 then max{Accept(α(w, y), t),

 Accept(β(w, y), t} else min{Accept(α(w, y), t),

 Accept(β(w, y), t}.

 Notice that ρ(w) ↔ � t [Accept(w,Initial, t) = 1].

 Here t is a tuple (t1, . . . , tr) of a fixed length r, and �t means � t1. . . � tr..
But RECREL is closed under the existential quantification over the elements.
Hence ρ is in RECREL. ■

SECTION 6. INDUCTIVE FIXED POINTS

The LFP formation rule of Section 3 had one ad hoc feature. To ensure that the
operator F(P) = {x: φ(P, x)} is monotone, the formula φ(P, x) was supposed to be
positive in P. The positivity of φ is sufficient but not necessary for the
monotonicity of F. Unfortunately, replacing the positivity condition by the
monotonicity condition results in an extension FO + LFP' of first-order logic that
we would not like to call a logic: the set of FO + LFP' formulas is undecidable
(29). Fortunately, there is a better fixed-point extension of first-order logic,

www.manaraa.com

22 Logic and the Challenge of Computer Science

called the inductive fixed-point extension FO + IFP, which is even more liberal
than FO + LFP'. It was introduced in (29) as a development of an idea of Livchak
(52). This section recapitulates the papers (37) and (38) where the inductive fixed-
point logic was studied.

Definition 1.12 Let F be a unary operation on a (finite) complete partially ordered
set D. Let g0 = min(D) and each g(i + 1) = F(gi). F is inductive if gi ≤ g(i+ 1) for
every i. It is easy to see that if F is inductive then it has a unique fixed point of the
form gi; this fixed point will be called the inductive fixed point IFP(F) of F. F is
inflationary if X ≤ F(X) for every XεD.

Lemma 1.4 Let F be a unary operation on a complete partially ordered set.

(a) If F is inflationary then it is inductive.

(b) The operation F'(X) = sup{X, F(X)} is inflationary; if F is inductive then
IFP(F') = IFP(F).

(c) If F is monotone then it is inductive and LFP(F) = IFP(F).

Proof is clear. ■

Examples Consider the power set of U = {0,1,2} ordered by inclusion.

1. Define FX = XU {the cardinality of X} if X ≠ U, and FU = U. Then F is
inflationary but not monotone. Moreover, F does not have a least fixed point: both
{1} and {0, 2} are fixed points of f but FØ ≠ Ø.

2. Define G = F except G{1} = Ø. Then G is inductive but neither inflationary nor
monotone.

3. The constant operations HX = {0} is monotone but not inflationary.

 The syntax of logic FO + IFP is the extension of the syntax of first-order logic
by:

The Inductive Fixed Point Formation Rule. Let r be a positive integer, x be an
r-tuple x1, . . . , xr of individual variables, P be an r-ary predicate variable, φ(P, x)
be a well-formed formula, and φ'(P,x) = [P(x) or φ(P,x)]. Then IFPP;xφ'(P,x) is a
well-formed predicate and [IFPP;xφ'(P,x)](x) is a well-formed formula.

The meaning of the predicate IFPP;xφ'(P,x) is the inductive fixed point of the
inflationary operator F(P) = {x: φ'(P,x) }. The global function semantics for first-
order logic naturally extends to FO + IFP.

The statement (c) of Lemma 1.4 implies that FO + IFP is at least as expressive as
logic FO + LFP' mentioned above.

www.manaraa.com

Inductive Fixed Points 23

Theorem 1.11 The logics FO + LFP and FO + IFP have the same expressive
power.

Corollary A global relation is expressible in FO + IFP + < if and only if it is
polynomial time recognizable.

Proof Use Theorem 1.4 of Section 3. ■

 Theorem 1.11 is a consequence of a stronger theorem. Let r be an arbitrary
positive integer, and let Γ range over monotone global functions of the empty
signature and of type

 Power-set(Universer) × Power-set(Universer) × Universer → Bool.

The monotonicity of Γ means that (on every finite structure) Γ(P1,P2, x) implies

Γ(P3,P4, x) if P1 � P3 and P2 � P4. We are interested in the inflationary operator
G(P) = {x: P(x) or Γ(P, not P, x)}.

 Define an extension FO + Γ of first-order logic by means of the following
formation rule: if x is an r-tuple of individual variables and φ(x), ψ(x) are well-
formed formulas then so is Γ({x: φ(x)}, {x: ψ(x)}, x). The global function se-
mantics for the extended logic is clear. Treat Γ as a positive operator: every
positive (respectively negative) occurrence of a predicate symbol in φ(x)or ψ(x)
remains so in Γ({x: φ(x)}, {x: ψ(x)}, x). If an FO + Γ formula ψ(Q, y) is positive in

a predicate symbol Q then the operator ψ̑(Q) = {y: ψ(Q, y)} is monotone; if

ψ̑ is repetitive (i.e. , if the length of the sequence y of individual variables equals
the arity of Q) then it has a least fixed point.

 We say that a relation A is a diagonal of a relation B if A is obtained from B by
identifying some arguments. For example, if B is given by some formula
β(v1, v2, v3, v4) and A is given by the formula α(v1, v2) = β(v1, v2, v1, v2) then A is a
diagonal of B.

Theorem 1.12 There is an FO + Γ formula ψ(Q, y) such that ψ is positive in Q, the

operator ψ̑ (Q) = {y: ψ(Q, y)} is repetitive, and the inductive fixed point of the
operator G(P) = {x: P(x) or Γ(P, not P, x)} is a diagonal of the least fixed point of

ψ̑.

 To deduce Theorem 1.11 from Theorem 1.12, prove by induction on FO + IFP
formula φ that φ is equivalent to (i.e., defines the same global relation as) some FO
+ LFP formula. The only nontrivial case is when φ = [IFPP; x(P(x) or Φ(P(x))](x).
Let Γ(P,P', x) be the result of replacing all negative occurrences of P in Φ by a
new predicate symbol P'. Then Γ is monotone in both relational variables, and
Φ(P(x) is equivalent to Γ(P, not P, x). Now use Theorem 1.12.

www.manaraa.com

24 Logic and the Challenge of Computer Science

Theorem 1.13 For every FO + IFP definable global relation ρ there is a first-order

formula φ(P, x) such that the operator φ̑(P) = {x: P(x) or φ(P, x)} is repetitive and

(a) if the arity of ρ is positive then ρ is a diagonal of IFP(φ̑),

(b) if ρ is 0-ary then the unary global relation ρ' such that �v(ρ'(v) ↔ ρ) is a

diagonal of IFP(φ̑).

 Theorems 1.12 and 1.13 imply the analog of Theorem 1.13 for FO + LFP
announced in (44).

Jiazhen Cai, a student of Bob Paige in New York University, questioned the proof
of Theorem 1.13 (more exactly, the proof of Lemma 2 in §4 of (38). The following
claim removes the difficulty in the proof and is interesting all by itself.

Claim Let φ(P, x, y) = [P(x) or φ0(P, x, y)] be an FO + IFP formula where x and y
are tuples of individual variables such that the length of x equals the arity of P.
Suppose that y-variables do not have bound occurrences in φ. Let Q be a new
predicate variable whose arity allows to form a formula Q(x,y), and let ψ(Q, x, y) is
the result of replacing each P(u) by Q(u,y) in φ(P, x, y). Then

 [IFPP;x φ(P, x, y)](x) ↔ [IFPQ; x,y ψ(Q, x, y)](x,y)

Proof For each y, let

 P0(y) = Ø, P1(y) = {x: φ(P0, x, y)}, P2(y) = { x: φ(P1, x, y)}, . . .

be the approximations to IFPP;x φ(P, x, y), and let
 Q0 = Ø, Q1 = {(x,y): φ(Q0, x, y)}, Q2 = {(x,y): φ(Q1, x, y)}, . . .

be the approximations to IFPQ; x φ(Q, x, y). (Here (x,y) is the concatenation of
tuples rather than a pair of tuples.) It suffices to check that each Pi(y) = {x:
Qi(x, y)}. The case i = 0 is trivial. Further,

 x belongs to Pi+1(y) ↔ φ(Pi(y), x, y) ↔ (by the induction hypothesis)
φ({x: Qi(x,y)}, x,y) ↔ ψ(Qi, x, y) ↔ (x,y) belongs to Qi+1. ■

 To formulate a similar claim for FO + LFP, replace the assumption that
φ(P, x, y) = [P(x) or φ0(P, x, y)] by the assumption that φ(P, x, y) is positive in P.

Remark Theorem 1.13 can be strengthened further: φ can be taken to be a
boolean combination of existential first-order formulas (11).

Remark The well-known zero-one law for first-order logic extends to inductive
fixed-point logic (10).

www.manaraa.com

Invariant Global Relations 25

SECTION 7. INVARIANT GLOBAL RELATIONS

We saw above that in the case of structures with built-in linear order there are nice
logics which capture polynomial time. In this section we discuss the problem of
capturing polynomial time in the general case. The problem was posed (in slightly
different terms) in (12b) and discussed in (29).

Definition 1.13 An r-ary global relation ρ of some signature σ is abstract if for
every isomorphism f from a σ-structure S onto a σ-structure T and all elements
xl , . . . , xr of S,

 ρS(xl , . . . , xr) ↔ ρT(fxl , . . . ,fxr).

 A logic capturing polynomial time is supposed to express exactly polynomial
time computable abstract global relations.1

Remark Some polynomial time complete abstract properties are expressible in
FO + LFP (45). But the abstract property that the universe is of even cardinality is
not expressible in FO + LFP (12b). In virtue of Theorem 1.11 in Section 6, that
abstract property is not expressible in FO + IFP.

 We do not believe that there is a reasonable logic that captures polynomial time.
To express our feeling in the form of a formal conjecture, we adapt the notion of
logical systems (18) to our purpose.

Definition 1.14 A logic L is a pair (SEN, SAT) satisfying the following re-
quirements. SEN is a function that associates with every finite signature σ a
recursive set SEN(σ) whose elements are called L-sentences of signature σ. SAT
is a function that associates with every finite signature σ a recursive subset SAT(σ)
of {(S, φ): S is a finite first-order σ-structure and φ is an L-sentence of signature
σ} such that if structures S and S' are isomorphic and (S, φ) belongs to SAT(σ)
then (S', φ) belongs to SAT(σ) as well. If (S, φ) belongs to some SAT(σ), we say
that S satisfies φ.

Definition 1.15 If L is a logic and φ is an L-sentence of some signature σ, then
MOD(φ) be the set of σ-structures satisfying φ.

Definition 1.16 A logic L captures polynomial time if:

1. For every L-sentence φ, the class MOD(φ) is polynomial time recognizable;
moreover, for every σ there is a Turing machine M that, given an L-sentence

1A logic capturing partial (not necessarily defined on all structures of the appropriate signature)
recursive abstract global relations was designed in (12a).

www.manaraa.com

26 Logic and the Challenge of Computer Science

φ of signature σ, produces a polynomial time bounded Turing machine M(φ) that
recognizes MOD(φ).

2. For every polynomial time recognizable class K of structures of some signature
σ, if K is closed under isomorphisms then there is an L-sentence φ of signature σ
such that MOD(φ) = K.

Remark In this section, a polynomial time bounded Turing machine can be
viewed as a pair (T,p) where T is a Turing machine and p is a polynomial with
integer coefficients; (T,p) accepts an input w of T if T accepts w within p(|w|)
steps.

Conjecture There is no logic that captures polynomial time.

 Our adaptation of the notion of logics in (18) includes some alterations. In
particular, we consider only finite signatures and finite structures, and require the
recursivity of sets SEN(σ) and SAT(σ). Let Rl and R2 be the two recursivity
requirements, respectively.

Claim 1 Waiving the recursivity requirements in Definition 1.14 falsifies the
conjecture.

Proof Call a Turing machine M σ-appropriate if (a) it is able to take σ-structures
as inputs, and (b) the class {S: S is a σ-structure and M accepts S} is closed
under isomorphisms. Define L = (SEN, SAT) where each SEN(σ) consists of
all σ-appropriate Turing machines, and each SAT(σ) consists of all pairs (S, M)
such that S is a σ-structure and M is a σ-appropriate Turing machine that accepts
S. It is easy to see that L is a logic in the liberalized sense and L captures
polynomial time. ■

 We could omit the second recursivity requirement R2 in Definition 1.14 because
it follows from the condition of capturing polynomial time, but we consider it
necessary in general and it complements Rl in the following sense (7). Suppose
that L = (SEN, SAT) satisfies the requirements of Definition 1.14 except for Rl
and R2, and suppose that the sets SEN(σ) are countable. Fix one-to-one mappings
fσ from SEN(σ) onto the set of natural numbers and rename every σ-sentence φ as
the number fσ(φ). The resulting system is similar to L and satisfies Rl.

 The definition of logics may be justifiably tightened in many ways. One may
require that every embedding f: σ → σ', taking any predicate (respectively func-
tion) symbol to a predicate (respectively function) symbol of the same or greater
arity, gives rise to a recursive embedding of SEN(σ) to SEN(σ '); that the functions
SEN and SAT themselves are recursive (when signatures are presented by

www.manaraa.com

Invariant Global Relations 27

codes if necessary); that the signature of a sentence is computable from the
sentence; that all recursivity conditions are replaced by corresponding polynomial
time conditions; etc. Similarly, the notion of capturing polynomial time can be
justifiably tightened in many ways. For example, one may require that the
existence of a polynomial time bounded Turing machines M that, given (the code
of) an arbitrary sentence φ, produces a Turing machine recognizing φ. We have
chosen our definitions taking into account the negative character of the conjecture.
Notice however the necessity of the requirement of the existence of machines M in
clause (a) of Definition 1.16.

Claim 2 Waiving the requirement of the existence of machines M in Definition
1.16 falsifies the conjecture.

Proof (7) Let SEN(σ) comprise polynomial time bounded Turing machines
able to take σ-structures as inputs. Call such a machine M symmetric with respect
to n if for every pair (S1, S2) of isomorphic σ-structures of cardinality at most
n, M accepts S1 if and only if it accepts S2. Given a σ-structure S of cardinality
n and a machine M in SEN(σ), put (S, M) into SAT(σ) if M is symmetric with
respect to n and M accepts S. Notice that each MOD(M) is closed under
isomorphisms. The pair (SEN, SAT) is a logic capturing polynomial time in the
liberalized sense. ■

Remark The conjecture is closely related to an open question of Chandra and
Harel [(12b) Section 5]. They ask (in somewhat different words) whether there is a
recursive set T of polynomial time bounded Turing machines such that for every σ
and every polynomial time recognizable class K of σ-structures, K is closed under
isomorphisms if and only if it is the collection of structures accepted by some
machine in T. Also, see the paper (5) of Arvind and Biswas in connection with the
conjecture.

 The conjecture can be slightly simplified by restricting the attention to graphs.

Definition 1.17 A graph logic L is a pair (SEN, SAT) satisfying the following
requirements. SEN is a recursive set whose elements are called L-sentences. SAT
is a recursive subset of {(S, φ): S is a finite graph and φ is an L-sentence} such that
if graphs S and S' are isomorphic and (S, φ) belongs to SAT then (S', φ) belongs to
SAT as well. If (S, φ) belongs to some SAT, we say that S satisfies φ.

Definition 1.18 If L is a graph logic and φ is an L-sentence, then MOD(φ) is the set
of σ-structures satisfying φ.

www.manaraa.com

28 Logic and the Challenge of Computer Science

Definition 1.19 A graph logic L captures polynomial time if:

1. For every L-sentence φ, the class MOD(φ) is polynomial time recognizable;
moreover, there is a Turing machine M that, given an L-sentence φ, produces a
polynomial time bounded Turing machine M(φ) that recognizes MOD(φ).

2. For every polynomial time recognizable class K of graphs, if K is closed under
isomorphisms then there is an L-sentence φ with MOD(φ) = K.

Theorem 1.14 The following statements are equivalent.

1. There is a logic that captures polynomial time.

2. There is a graph logic that captures polynomial time.

Proof The implication (1) → (2) is obvious. To prove the other implication, we
use the well-known fact that an arbitrary structure S can be efficiently represented
by a graph G(S) in such a way that two structures S1 and S2 of the same signature
are isomorphic if and only if the graphs G(S1) and G(S2) are isomorphic.
Moreover, there is a polynomial time Turing machine that, given the standard
encoding of an arbitrary structure S, produces the desired graph G(S). If a graph
logic L = (SEN, SAT) captures polynomial time, define L' = (SEN', SAT') where
for each σ, SEN'(σ) - SEN and SAT'(σ) = {(S, φ): S is a σ-structure and G(S)
satisfies φ}. Obviously, L' captures polynomial time. ■

 Let us notice that both the special case, when the presence of linear order is
assumed, and the general case, when the presence of linear order is not assumed,
are important. As an input for a computing device, a structure should be rep-
resented in some way. A representation itself can be viewed as a structure, and in
that richer structure a certain ordering of elements is usually definable. On the
other hand, one is often interested in properties of structures that are independent
of representation; let us call such properties invariant. To simplify somewhat the
situation, let us view ordered versions of a given structure S as representations of
S.

 One way to ensure the invariance of a property of structures is to express the
property in a logic that does not distinguish between different representations. For
example, FO + LFP sentences express only invariant properties. There is another
approach which is a priori more promising: allow linear order and concentrate on
those properties that do not depend on order. In the rest of this section,
interpretations of the binary predicate symbol < are restricted to linear orders. If
the signature of a structure S contains < then S will be called ordered, otherwise
it will be called unordered. If σ is a signature without <, S is a structure of

signature σ �{<} and S0 is the reduct of S to σ, we will say that S0 is the unordered
version of S, and S is an ordered version of S0, and any ordered version of S0 is a
reordering of S.

www.manaraa.com

Invariant Global Relations 29

Definition 1.20 An r-ary global relation ρ of some signature σ ��{<} is invariant on

a structure S of signature σ � {<} if for every reordering T of S, ρS(x) ↔ ρT(x).
The global relation ρ is invariant if it is abstract and invariant on every structure of

signature σ � {<}.

 It is easy to see that ρ is invariant if and only if the boolean value of ρS(x)

depends only on the isomorphism type of 〈S0, x〉where S0 is the unordered
version of S.

 The definition of invariant global relation ρ generalizes in a natural way to the
case when ρ is K'-global where K is an arbitrary class of ordered structures of

some signature σ � {<} closed under isomorphisms and reorderings. Notice that
an algorithm computing an invariant K'-global relation may use the given ordering.

Example Given a group with a linear order, the following algorithm computes the
center of the group:

C : = Ø;

for x : = (the first element) to (the last element) do

begin

 flag := l;

 for y := (the first element) to (the last element) do

 if x•y ≠ y• x then flag : = 0;

 if flag = 1 then C : = C��{x}

end

Theorem 1.15 The decision problem whether a given first-order sentence with
possible occurrences of < yields an invariant global relation, is undecidable.

Proof Let α range over first-order sentences without occurrences of <. The
validity of α on all finite structures is undecidable (64), hence the validity of α
on all finite structures with at least two elements is undecidable. Let P be a
unary predicate symbol that does not occur in α, and let β be a first-order
sentence of signature {P,<} asserting that < is a linear order and that the first
element in that order belongs to P whereas the last element does not. Then α is
valid on all finite structures with at least two elements if and only if the disjunction
(α or β) is invariant. ■

Remark Theorem 1.15 may be strengthened by means of different syntactic
requirements on the given first-order formula: use numerous known strengthenings
of Trakhtenbrot's theorem.

www.manaraa.com

30 Logic and the Challenge of Computer Science

Theorem 1.16 There is a first-order sentence φ such that the decision problem
whether φ is invariant on a given ordered structure, is coNP complete.

Proof We consider a restriction of the 3-colorability problem which is a known
NP complete problem (25). Let H be the graph with vertices 0, 1, 2, 3 and the
edges {0,1}, {1,2}, {2,3}, {3,0} and {0,2}; H is a cycle of length 4 plus one
additional edge. H is 3-colorable, and every 3-coloring of H assigns the same
color to vertices 1 and 3. Let Γ be the set of graphs that include H as a component.
It is assumed—with respect to the proviso of Section 1—that the vertices of any
member of Γ form an initial segment of natural numbers. It is easy to see that the
restriction of 3-colorability problem to Γ is NP complete. For every graph G in Γ
let G* be the enrichment of G by means of the natural order of vertices.

 The desired φ speaks about ordered graphs. It asserts that there are vertices x < y
such that the segments {v: v < x}, {v: x ≤ v < y} and {v: y < v} constitute a
3-coloring. It suffices to prove that an arbitrary member G of Γ is 3-colorable if
and only if φ is not invariant on G*. If G is not 3-colorable then φ fails on any
ordered version of G and, therefore, is invariant on G*.

 Suppose G is 3-colorable. Fix a 3-coloring of G. Let Gl be any ordered
version of G where the vertices of color 1 form an initial segment and the vertices
of color 3 form a final segment. Let G2 be an ordered version of G where vertex
1 is the first and vertex 3 is the last. It is easy to see that φ holds on Gl and
fails on G2; hence G is not invariant on G*. ■

SECTION 8. IS THERE A LOGIC FOR NP∩coNP or R?

We give some evidence that no logic captures NP∩coNP global relations or
exactly R (random polynomial time recognizable) global relations. The argument
is an elaboration of a remark in (28) and uses Sipser's result (59) that each of the
two classes fails to have a complete problem (with respect to polynomial time
reductions) under an appropriate oracle. The notion of logics was defined in the
previous section. In connection with this section see a recent paper of Hartmanis
and Immerman (40).

First we consider class NP∩coNP. Nondeterministic Turing machines M, N and a
polynomial f will be said to witness that a class K of structures of some signature
σ is NP∩coNP if for every n and every σ-structure S of cardinality n, (i) S belongs
to K if and only if M accepts S within time f(n), and (ii) S does not belong to K if
and only if N accepts S within time f(n).

Definition 1.21 A logic L captures NP∩coNP if:

www.manaraa.com

Is There a Logic for NP∩coNP or R? 31

1. For each L-sentence φ, the class MOD(φ) is NP∩coNP; moreover, for every
signature a there is a Turing machine that, given an L-sentence φ of signature σ,
produces a triple (M, N, f) witnessing that MOD(φ) is NP∩coNP; and

2. Every NP∩coNP class of structures of a fixed signature is definable by an L-
sentence.

Theorem 1.17 If a logic L captures NP∩coNP then NP∩coNP has a complete
problem with respect to polynomial time reducibility.

Proof Let σ be a signature comprising one unary predicate symbol. Fix a Turing
machine A that generates all L-sentences of signature σ, and a Turing machine B
that, given an L-sentence φ of signature σ, generates a triple witnessing that
MOD(φ) is NP∩coNP. Let Q be the set of tuples (α, φ, β, M, N, f, S, 1f(n)) such
that (i) α is a computation of A, φ is an L-sentence generated by α, β is the
computation of B on φ, (M, N, f) is the output of β, S is a σ-structure, n is the
cardinality of S, 1f(n) is a string of 1's of length n, and (ii) S satisfies φ.

 The condition (i) is polynomial time checkable. The condition (ii) is NP
(respectively coNP): guess a computation of M (respectively N) on S of length
f(n) and verify that the computation is accepting. Thus the decision problem for
Q is NP∩coNP. To show that this decision problem is NP∩coNP hard, we
reduce to Q the decision problem for an arbitrary NP∩coNP class X of binary
words. If w is a binary word α1. . . αn let Sw be the σ-structure with universe
{0,1, ...,n} and relation {i: αi = 1}. (The universe contains n + l elements
because it should be nonempty whereas n may be equal to 0.) Since L captures
NP∩coNP, there is an L-sentence φ with MOD(φ) = {Sw: w ε X}. Let α be a
computation of A that outputs φ, β be the computation of B on φ, and (M, N, f)
be the output of β. Obviously, w ε X iff Sw ε MOD(φ) iff (α, φ, β, M, N, f, SW,
1f(n+1)) belongs to Q. ■

 Theorem 1.17 contrasts with Sipser's result (59) that, relative to some oracle ∆,
NP∩coNP does not possess a complete problem. (Certainly no logic captures
NP∩coNP under the oracle ∆ because the proof of Theorem 1.17 relativizes.) We
conjecture that if some logic captures NP∩coNP then something drastic happens
like NP∩coNP = P or NP = coNP. It may be desirable to restrict further the notion
of a logic capturing NP∩coNP. For example, one may request that L-sentences are
polynomial time recognizable.

Remark The converse of Theorem 1.17 is true to the extent that, given an
NP∩coNP complete problem Q, one can construct a set of "sentences" and a
satisfaction relation that capture NP∩coNP. Define sentences of signature a as
triples (M, f, σ) where M is a deterministic Turing machine able to take σ-

www.manaraa.com

32 Logic and the Challenge of Computer Science

structures as inputs, and f is a polynomial. Say that a σ-structure S of cardinality n
satisfies φ = (M, f, σ) if M halts on inputs S within time f(n), and the result M(S)
belongs to Q.

 Definition 1.21 and Theorem 1.17 generalize to some other classes with well
defined witnesses. We turn now to random polynomial time. Recall that a set K of
strings in an alphabet ∑ is R if and only if there are a deterministic Turing machine
M and polynomials f, g such that for every n and every string s ε ∑* of length n the
following are equivalent:

1. The string s belongs to K,

2. There is a string t in {0, l}g(n) such that M accepts the pair (s,t) within time f(n),
and

3. For at least one half of strings t in {0, l}g(n), M accepts the pair (s,t) within time
f(n).

 We say that (M, f, g) witnesses that K belongs to R. Without loss of generality,
we may suppose that fn ≥ gn for all n. The definition obviously generalizes to the
case when K is a class of structures of a fixed signature.

Definition 1.22 A logic L captures R if:

1. For each L-sentence φ, MOD(φ) is R; moreover, for every signature σ there is a
Turing machine that, given an L-sentence φ of signature σ, produces a triple (M, f,
g) witnessing that {S: S satisfies φ } is R; and

2. Every R class of structures of a fixed signature is definable by an L-sentence.

Theorem 1.18 If a logic L captures R then R has a complete problem with respect
to polynomial time reducibility.

Proof Similar to that of Theorem 1.17. ■

 Theorem 1.18 contrasts with Sipser's result (59) that, relative to some oracle,
there is no complete problem for R with respect to polynomial time reducibility.

SECTION 9. MISCELLANY

9.1 Sequences of Bounded-Depth Circuits

We suppose here that signatures comprise only predicate symbols, and boolean
circuits have unique output gates. Recall that, according to the proviso of Section
1, the universes of structures are proper initial segments of natural numbers.

www.manaraa.com

Miscellany 33

Definition 1.23 A boolean circuit C is formatted with respect to a signature σ and a
positive integer n if input gates of C are labeled by sentences Q(i1, . . . , ir) where
Q belongs to σ, r is the arity of Q, and every ip < n. (Every input gate has exactly
one label; hence, the number of input gates is bounded by the number of sentences
Q(i1, . . . , ir).)

Definition 1.24 A circuit C, formatted with respect to σ and n, accepts a σ-structure
S of cardinality n if C outputs 1 when the input gates of C are set with respect to S
(an input gate labeled Q(i1, . . . , ir) gets value 1 if S satisfies Q(i1, . . . , ir), and
value 0 otherwise).

Definition 1.25 A class K of σ-structures is definable by a sequence of circuits C1,
C2, . . . if every Cn can be formatted with respect to σ and n in such a way that the
formatted circuit accepts a σ-structure S of cardinality n if and only if S belongs to
K.

Lemma 1.5 Let σ be a signature, φ be a first-order σ-sentence, and n be a positive
natural number. There is a circuit Cn formatted with respect to σ and n in such a
way that the depth of Cn is the logical depth of φ, and Cn accepts a σ-structure S of
cardinality n if and only if S satisfies φ.

Proof Let σn be the extension of σ by individual constants 0, 1, . . . , n - 1. By
induction, turn any sentence α, whose signature is included into σn, into a
formatted circuit αn. If α is atomic then αn is the circuit comprising one gate
labeled α. The cases of conjunction, disjunction and negation are obvious. If α is

�xβ(x) (respectively �xβ(x)) then join the circuits β(0)n, β(1) n, . . . , β(n - l)n by an
additional OR (respectively AND) gate. Finally, φn is the desired Cn. ■

 The sequence of circuits, constructed in the previous paragraph, is very uniform.
In particular, it is log-space constructible i.e. there is a log-space bounded Turing
machine that, given the unary notation for n, produces (the standard code for) Cn.

 Let L0 be a logic that captures exactly log-space recognizable global relations of
the empty vocabulary. L0 can be the fragment of logic FO + DTC + < (see
Section 3) whose formulas contain no individual constants, no function symbols
and no predicate symbols except for <. L0 can be the calculus of primitive
recursive functions of the empty vocabulary (see Section 6); in this case the
formulas are equations t = 0. Let FO + L0 be the extension of first-order logic by
L0 whose formulas are built from first-order formulas and formulas in L0 by first-

order means (boolean connectives and quantifiers �,�); the global function
semantics for FO + L0 is obvious.

www.manaraa.com

34 Logic and the Challenge of Computer Science

Theorem 1.19 (35) Let K be a class of structures of some signature σ. The
following are equivalent:

1. K is definable by a log-space constructible sequence of circuits of bounded
depth,

2. K is definable by a sentence in FO + L0. ■

 We skip the proof here. The theorem generalizes for many other complexity
classes (35).

 Logic FO + L0 and many other extensions of first-order logic, considered above,
were specially tailored to capture respective complexity classes. Logic FO + L0 is
the most modest of these extensions. An interesting question arises whether first-
order logic itself captures any complexity class. Well, the answer to this question
depends on the definition of complexity classes. The problem of the definition of
complexity classes is a deep one, and we are not going to tackle it here. Let us
only mention that Denenberg, Gurevich, and Shelah (17) have characterized first-
order definable sequences of bounded-depth circuits by means of symmetry and
uniformity conditions.

9.2 A Note on Topology on Finite Sets

There is a definite analogy between (i) classes of unary global relations definable
by sequences of circuits of bounded depth and polynomially bounded size, and (ii)
Borel subsets of the Cantor discontinuum. This analogy was exploited by Sipser
in (60). Reading Ajtai's paper (3), we found it useful to think in terms of Borel
subsets of finite topological spaces. The definition of Borel subsets of finite
topological spaces is given in this subsection.

Recall that a topology is Tl (50) if all one-point subsets are closed; we are not
interested here in topologies that are not T1. Every finite T1 topological space is
discrete, i.e., every subset is both closed and open. Thus, the theory of finite T1
topological spaces seems to be quite trivial. However, one may ask how many
intersections and unions does it take to express a given point-set in terms of sub-
basic open sets. This leads to a generalization of the Borel hierarchy to finite
topological spaces.

Definition 1.26 Xn is the topological space whose points are subsets of {0,1, ...,
n - 1} and whose sub-basis comprises the n point-sets {P: i ε P}.

 The analogous definition with the set ω of natural numbers instead of {0,1, . . . ,
n - 1} results in a topological space Xω homeomorphic to the Cantor Discontinuum
[(50), §3, IX]. Borel subsets of Xω form the closure of the sub-basis

www.manaraa.com

Miscellany 35

under complements, countable intersections and countable unions. This suggests
the following:

Definition 1.27 A subset of Xn is Borel of level 0 if it is sub-basic. It is Borel of
level d, where d > 0, if it is the intersection of at most n Borel sets of levels less
than d, or the union of at most n Borel sets of levels less than d, or the complement
of a Borel set of a level less than d.

 There is an obvious connection between Borel point-sets and boolean circuits
with unique output gates. Suppose that C is a circuit with n input gates labeled by
integers 0, . . . , n - 1. In the obvious way, the input of C represents a point in Xn.
C is said to accept a point P if the corresponding output is 1. C is said to recognize
the set {P: C accepts P}.

Claim 1 Let A be a subset of Xn, and d be a natural number. The following are
equivalent:

1. F is Borel of level d,

2. There is a circuit C with n input gates labeled by integers 0, . . . , n - 1 such that
the depth of C is at most d, the fan-in of C-gates is bounded by n, and C
recognizes A.

Proof is clear. ■

Definition 1.28 A global point-set π assigns a subset of Xn to each Xn. If there is
a natural number d such that the specification of π on each Xn is Borel of level d
then π is Borel (of level d).

Claim 2 The following are equivalent:

1. tt is Borel,

2. There is a bounded-depth polynomially-bounded-size sequence of circuits Cn

such that each Cn recognizes the specialization of tt on Xn.

Proof is clear. ■

 Let P be a unary predicate symbol. A first-order sentence φ(P) in signature {P}
defines a Borel global point-set {P: φ(P)} of level d where d is the logical depth of
φ(P). First-order definable point-set π are symmetric in the following sense: if P1
and P2 are subsets of Xn of the same cardinality then Pl belongs to is the
specialization of π on Xn if and only if P2 does. Some Borel global point-sets are
symmetric in that sense but not first-order definable (17, 22).

www.manaraa.com

36 Logic and the Challenge of Computer Science

PART 2. DYNAMIC STRUCTURES WITH BOUNDED RESOURCES

One finds a great many formal languages in computer science: programming
languages, query languages, etc. It is natural for a logician to ask what structures
are suited to model those formal languages. For example, what are models for
Pascal? Of course, it is not necessary to start with formal languages. One can ask
what structures are appropriate to formalize machines, databases and other objects
of interest in computer science. We adopt the unspoken assumption of
mathematicians that in principle there are appropriate structures; the problem is to
find them.

SECTION 10. DYNAMIC STRUCTURES WITH BOUNDED
RESOURCES, AND TURING'S THESIS

This section develops the ideas presented first in technical report (31) and is sort
of an extended abstract for (34). I am thankful to Kit Fine for his comments on the
report, and to Andreas Blass for many useful discussions.

10.1 Abstract Machines with Bounded Resources

The popular and useful abstraction of unbounded resources may be inappropriate
under certain circumstances. For example, one may be reluctant to idealize his/her
computer as a machine with unbounded memory if the computer keeps running
out of memory all the time.

In (31) and (33) we discussed a new kind of abstract machines, called dynamic
structures or dynamic algebras, whose resources may be bounded. Sometimes it is
easier to express one's arguments in a discussion. Please allow me the liberty of
introducing an opponent (a skeptical graduate student).

Objection 1 There is already a very well worked out formalization of machines
with bounded resources. I mean finite state machines. Your dynamic structures
with bounded resources are finite state machines too, aren't they?

Answer Yes, dynamic structures with bounded resources are finite state ma-
chines. But their theory does not reduce to the classical theory of finite state
machines because the number of states may be overwhelming. Dynamic structure
with bounded resources may capture the behavior of real computers (like PDP-11
or Macintosh) or model real programming languages (like Pascal or Smalltalk).

www.manaraa.com

Dynamic Structures with Bounded Resources 37

It is not feasible to draw the diagram or to write down the transition table (or a
regular expression) for such a finite state machine.

Objection 2 I do not understand how a machine with bounded resources can model
Pascal. Consider a Pascal program for computing factorials. A machine with
unbounded resources is needed to provide an operational meaning to the program.
Every machine with bounded resources fails to compute the factorial of some
sufficiently large integer; it cannot give an adequate operational meaning to the
program.

Answer A good point. The meaning will be given by a family of finite machines
(in the same way as the meaning of a first-order formula is given by a family of
first-order structures). A family of finite Pascal machines will be briefly sketched
below. Here is a simpler example of a family: bounded-tape versions of a given
Turing machine T with special end-of-tape marks.

Objection 3 Let me ignore the end-of-tape marks (I guess that bounded-tape
versions of T without end-of-tape marks form a legitimate family too). Then the
computation of any bounded-tape version of T is an initial segment of the com-
putation of T, and the cut-off point is irrelevant to the meaning of the program. I
would prefer to consider the computation of T itself rather than a pretty arbitrary
collection of initial segments of the computation.

Answer Yes, in many cases, a machine with unbounded resources gives a cleaner
operational semantics. But not always. The end-of-tape marks were there for a
reason. Machines with bounded resources may know their resources and utilize
this knowledge. A program for bounded-tape machines may use the end-of-tape
mark for different purposes; for example, the end-of-tape mark may be used for
dividing the tape equally into a left and a right part and executing two different
processes in a time-sharing fashion. More convincing examples of how abstract
machines with bounded resources may use their knowledge of bounded resources
come from real life. Think about operating systems. In particular, think about an
operating system which may run on many computers and which starts with an
inventory of the available resources. Of course, this program (the operating
system) can be modeled by a machine with unbounded resources, but this is not
necessarily the best way to provide an operational semantics to the program.

10.2 Dynamic Structures

The usual mathematical structures, and in particular first-order structures, are
static. They do not change in time. Mathematicians tend to formalize dynamic

www.manaraa.com

38 Logic and the Challenge of Computer Science

situations in a static way. Given a dynamic process in an n-dimensional space, a
mathematician introduces an additional dimension for time and studies the
resulting (n + l)-dimensional body which represents all states of the original n-
dimensional process at once.

 Typical objects of computer science—machines, databases—are dynamic. They
evolve in time. Of course, the same trick of representing all states at once can be
used. This is exactly what you do when you draw the diagram of a finite
automaton. Often, the trick does not work well. We believe that the difficulties are
related to the overwhelming complexity of computing processes (versus, say,
abstracted physical processes). There is no simple system of equations describing
the behavior of a large time-sharing computer system. On the other hand, com-
puting processes often have a certain simplicity in them: they evolve in discrete
time and the states as well as atomic transitions are relatively simple.

 The dynamic structure approach attempts to utilize the simple features of
computing processes. A dynamic structure is a static structure (the initial con-
figuration of the dynamic structure) evolving in discrete time with respect to
specified transition rules. To specify a dynamic structure one needs to specify a
static structure and transition rules.

 The notion of dynamic structure may strike as an old news. There are similar
notions in the literature; let me mention only transition systems in Gordon Plot-
kin's report (55). We see the main novelty in the intended use of dynamic
structures. The configuration of discourse is going to play a greater role than the
set of all configurations; from that point of view logic of dynamic structures is
similar to temporal logic. Configurations are full-fledged static structures which
have usually several universes. Here are some relevant questions. Do the universes
change? Can new universes appear? Can old universes disappear? Does the
signature change? What is the form of transition rules? Some other important
notions are: bounded resources, families of dynamic structures, the dynamic
structure of discourse.

 Only special classes of static structures are defined formally in mathematical
logic: usual first-order structures, many-sorted first-order structures, standard
second-order structures, nonstandard second-order structures, etc. The general
notion of static structures remains informal. Similarly, we leave the general
notions of dynamic structures informal and define formally only special classes of
dynamic structures. The notion of a family of dynamic structures is left informal
too. We require however that all members of a family have the same transition
rules.

 To have a nontrivial example of a dynamic structure, one may formalize a
modest computing device (on some level of abstraction). In connection with (33),
my student, Bob Blakley, has worked out a formalization of PDP-11/04, the
smallest machine using DEC's well-known PDP-11 architecture. The resulting
dynamic structure is an evolving many-sorted first-order structure with static
universes, static signature and transition rules of a very simple form.

www.manaraa.com

Dynamic Structures with Bounded Resources 39

 Universes of the formalized PDF-11704 are Registers = {R0, ..., R7},

Addresses � {0,1}16, Words = {0,1}16, Opcodes, etc. Elements of Registers
represent the 8 registers of the computer. PDP-11/04 uses register R7 as the
instruction pointer. Elements of Opcodes represent legal assembly-language in-
structions in the PDP-11/04 instruction set. The set of addresses varies from one
implementation of PDP-11 to another. To reflect this fact, the extent of Addresses
is not fixed in Blakley's formalization.

 Many basic functions of the dynamic structure are static: arithmetical operations,
the eight zero-ary functions (i.e. distinguished elements) Rl-R7 of type Registers, a

function Addrtranslate from Words to (Addresses � {Error}), a function Getop
from Words to Opcodes, etc. Addrtranslate converts words (elements of Words)
to addresses (elements of Addresses). If a word w is an address then
Addrtranslate(w) = w, otherwise Addrtranslate(w) = Error. The analog of
Addrtranslate for some other computers may be more complicated; one reason is
that words may be longer than addresses.

 Some dynamic basic functions of the formalized PDP-11 are

 Regcontents: Registers → Words,

 Contents: Addresses → Words,

 Currentop, a distinguished element of Opcodes.

 The following transition rule is self-explanatory:

 Currentop ← Getop(Contents(Addrtranslate(Regcontents(R7)))).

Remark The idea of bounded resources and the idea of dynamic character are
independent. One can study infinite static structures, finite static structures,
dynamic structures with unbounded resources, and dynamic structures with
bounded resources.

10.3 Turing's Thesis and Finite Dynamic Structures

A strong form of Turing's thesis states that every computing device can be
simulated by an appropriate Turing machine (24). The thesis loses some appeal if
one restricts attention to computing devices with bounded resources because the
resources of Turing machines are unbounded. This brings us to the question of an
analog of Turing's thesis for the case of machines with bounded resources.

 New thesis problem (first draft formulation). Define a modest class U (for
'universal') of abstract machines with bounded resources such that every com-
puting device with bounded resources can be closely simulated by a U-machine

www.manaraa.com

40 Logic and the Challenge of Computer Science

of comparable specification and information sizes, and every family of computing
devices with bounded resources can be appropriately simulated by a family of
U-machines.

 We speak about a modest class, close simulations and comparable sizes in order
to exclude some unsatisfactory solutions. Let us explain that.

 The computing devices in question are supposed to be real devices satisfying
some minimal assumptions. (Actually, it is a little more complicated. We should
be talking about a computing device and a fixed level of abstraction, of omitting
details.) A part of the desired solution is that U-machines are dynamic structures.
This is not a complete solution. First, the notion of dynamic structures was left
informal. Second, dynamic structures may be used as virtual machines (for
example, to model higher level programming languages) and therefore may be
more complex than needed for the thesis. The desired class U should be well-
defined and as simple as possible.

 It is reasonable to assume that a computing device with bounded resources can
be step-by-step simulated by a finite state transducer. (A finite state transducer is a
finite automaton with output; a simulation is step-by-step if every step of the
simulated machine corresponds to one step of the simulating machine.) Even if we
ignore the question of families of finite state transducers, the reduction to finite
state transducers should be treated with caution: the transition table of the
simulating transducer may be much bigger than the description of the simulated
device. The specification size of the simulating machine should be severely
bounded in terms of the specification size of the simulated machine.

 It would also be unsatisfactory if the number of states of the simulating machine
too greatly exceeds the number of states of the simulated machine. The logarithm
of number of states can be called the information size (9). Thus, the information
size of the simulating machine should be severely bounded in terms of the
information size of the simulated machine.

 Bounded-tape versions of Turing machines with end-of-tape marks constitute
one possible solution for the new thesis problem (31). An argument similar to
Turing's informal proof of his thesis (66) establishes that for every computing
device D with bounded resources there is an appropriate bounded-tape Turing
machine that simulates D. This solution is unsatisfactory even if we put aside the
question of the specification and information sizes: the simulations may be too
complex and indirect. (Imagine, for example, that D is Apple's Macintosh in any
of its incarnations.)

Remark One may argue that Turing's thesis itself has the same drawback. We
agree; Turing machines are clumsy simulators. But who said that Turing's thesis
cannot be improved? An early improvement of Turing's thesis was worked out by
Kolmogoroff and Uspenski (48). So-called random access machines (1) are very
popular. Very interesting machines were introduced by Schoenhage (58).

www.manaraa.com

Models for Pascal 41

 Which simulations should be permissible? Step-by-step simulations are ideal.
Are they too restrictive? Recall that, in the case of machines with unbounded
resources, a simulation is called real-time if one step of the simulated machine
corresponds to at most c steps of the simulating machine where c is a constant.
One can adapt this definition to the case of machines with bounded resources by
imposing a restriction on the constant c in terms of the specification and
information sizes of the simulated machine. Then one can require that only real-
time simulations are permissible.

 In (34) we intend to discuss more interesting solutions for the new thesis
problem: Kolmogoroff-Uspenski machines with bounded resources, Schoenhage
machines with bounded resources, random access machines with bounded re-
sources and the solution proposed in (33). Andreas Blass and the author continue
to work on the problem (9); the joint work has greatly influenced this section.

SECTION 11. MODELS FOR PASCAL

This section can be read independently.

11.1 Preliminaries

Imagine that you read a Pascal program and come across an assignment x:= x.
What a silly thing to write, you may think. The assignment is obviously super-
fluous. Or is it there for a reason? Maybe it appears in the definition of a function
procedure x in order to trigger the side effects of procedure x? You check and find
out that x is a variable of type INTEGER. If there were several processes, then the
purpose of the assignment could be related to synchronization or claiming a shared
variable. But no, this is standard Pascal with only one process. You can think up
some other possible effects of the assignment in some other languages, but all that
seems to be irrelevant to Pascal. You become convinced that the assignment can
be deleted. But the deletion changes the program and its execution somewhat.
Maybe the right reason for the assignment just did not pop up in your mind. You
would like to be able to prove that the deletion does not change your program in
any essential way. Your semantics of Pascal should facilitate easy proofs of such
simple facts.

 Semantics of programming languages is a very rich field (some of our sources
appear in the list of references). Still it seems to us that no known formal
semantics is sufficiently convenient to deal with real-life imperative languages.
"Unfortunately, all of the formal approaches to semantic definition require a great
deal of sophisticated effort and produce a result which is impossible to read
without extensive study," writes Ellis Horowitz in his Fundamentals of
Programming Languages (43).

www.manaraa.com

42 Logic and the Challenge of Computer Science

 We would like to model programming languages, and in particular Pascal, by
means of dynamic structures with bounded resources. Recall that dynamic struc-
tures are generalizations of the many-sorted static structures used in mathematical
logic. They evolve in discrete time; every configuration of a dynamic structure is a
static structure. To specify a dynamic structure one should specify its initial
configuration and transition rules. Recall also that dynamic structures with finite
resources are finite state machines (rather than potentially infinite machines), and
that semantics of a programming language is supposed to be given by a family of
resource-bounded dynamic structures with the same language of initial
configurations and the same finite set of transition rules.

 The desired Pascal models are ideal Pascal machines that directly execute Pascal
programs. Many questions arise immediately. In what form should Pascal
programs be given? What is the language of initial configurations? Should sub-
sequent configurations have the same language or should the language of con-
figurations evolve? How much can be executed in one step? How simple should
the transition rules be? How should one impose a bound on the memory? And so
on, and so on. This section was written with the active participation of my
graduate student Jim Morris. To answer the above questions, we tried to use rich
experience of real-world Pascal implementations, the insight and achievements of
present-day semantics of programming languages, and analogies in classical logic.

 A family of Pascal models is sketched in Section 11.2. Answering our solic-
itation of problems, Albert Meyer sent us a number of simple claims about Pascal
including the claim about the superfluousness of the assignment x:= x where x is
an integer variable. In Section 11.3 we sketch proofs of three of Meyer's claims in
our semantics. In the final Section 11.4, we discuss in particular the question of
when two Pascal programs have the same meaning.

 We barely touch upon the issue of bounded resources in this section. That issue
and others (possible applications of semantics of programming languages go far
beyond proving simple claims about existing programming languages) will be
addressed in (36) and elsewhere.

Acknowledgements I am thankful to Jim Morris for help, to Albert Meyer for
sending the problems, to Albert Meyer, David Gries, and my Michigan colleagues
Andreas Blass, Bernie Galler, and others for useful discussions.

11.2 Models for Pascal

We shall outline a finite dynamic structure M(Prog) where Prog is a Pascal
program. Some parts of M(Prog) depend on Prog and some do not. One can
abstract the underlying machine M which is a Pascal interpreter of a sort. For the
sake of brevity, we will stress here the machine-like (rather than algebraic) aspects
of M(Prog).

www.manaraa.com

Models for Pascal 43

 The initial configuration of M(Prog) is a finite many-sorted static structure.
Some of the universes do not depend on Prog: an interval of integer numbers, a set
of real numbers, the boolean universe {true, false}, a set of identifiers, and so on.
The interval of integer numbers is equipped with the usual linear order, (the
restrictions of) the usual arithmetical operations, distinguished elements MAXINT
and MININT. We treat relations as boolean-valued functions. The only basic
function defined on identifiers is the boolean function of equality. (Thus,
identifiers are seen as mere tokens. In practice the token are represented by strings
of letters and digits starting with a letter. Several strings may represent the same
token. It may be, for example, that two strings of length 16 or more represent the
same token if they have the same initial segment of length 16.)

 The program Prog is given in the form of a decorated1 parse tree which
constitutes a universe in the initial configuration. Each type declared in Prog
constitutes a universe of M(Prog). Many universes and many basic functions of
M(Prog) are static; they are part of the initial configuration and do not change
during the evolution of M(Prog).

One semantical complication is related to the fact that Pascal allows the
programmer to reuse identifiers and labels. The name of a procedure, a variable,
etc. may not identify the corresponding declaration uniquely. In order to provide
unique names to different procedures, types and variables, we adopt a common
convention. If a program Prog declares a procedure P1 which declares a procedure
P2 which declares a procedure P3 (so that the procedures P1, P2 and P3 are of
levels 1, 2 and 3, respectively, in Prog) then we will call the procedures (and the
corresponding blocks) P1, P1.P2, P1.P2.P3 or Prog.P1, Prog.P1.P2,
Prog.P1.P2.P3, respectively. If a Pascal variable x is declared in a block B (so
that B is the smallest block containing the declaration), it will be called B.x. The
denotation of B.x will be called a raw variable because in general the block B may
be called recursively, and B.x may have several incarnations which are variables in
their own right.

 The complication arising from the reuse of identifiers and labels is not serious.
Whenever one comes across a node of the parse tree decorated with an identifier, it
is always clear which declaration of the identifier is relevant. To reveal this
information, we use a special static function Decl which allows us to compute the
Signification of the identifier in question. In the case of a variable name,
Signification indicates the relevant raw variable. Signification is a dynamic
function which solves, in particular, the aliasing problem (63).

Remark One may prefer to create the types and to compute the necessary values
of the Decl function during the evolution of the machine. For some languages that
may be the only alternative, but Pascal programs explicitly declare

1The decoration reflects the so-called static semantics of the program.

www.manaraa.com

44 Logic and the Challenge of Computer Science

new types and use static binding of variables, which allows us to have all types
and the Decl function from the beginning. Applying the principle of separation of
concerns (26), we would like to get some relatively easy syntactical things out of
the way by incorporating them into the initial configuration.

 Transition rules of M specify the evolution from a given state to the next one.
They do not depend on the given program. Let us perform an imaginary exper-
iment. Imagine that you (rather than a computer) execute a Pascal program. What
information should you keep in mind (or on paper)? You should know where you
are currently in the program and where you should return after executing a
procedure. You should know which variables exist and what their values are. You
may need to remember the results of different subcomputations, in particular the
values of different expressions and subexpressions; etc.

 To record the current position in the program, M(Prog) has a 0-ary dynamic
function (i.e. a dynamic distinguished element) called the active node, or control,
whose possible values are nodes of the parse tree. Usually, one transition takes the
control to a child or the parent of the currently active node. The exceptions are
related to goto statements and procedure calls.

 To record procedure calls and where to return from them, M(Prog) has a stack
that will be called the procedure stack. The restriction allows us to get away with a
simpler procedure stack. Formally speaking, the procedure stack is function from
an initial segment of natural numbers to nodes of the parse tree. When a procedure
is called at some node N of the parse tree, M(PROG) "pushes" N onto the stack
and the control is transferred to Signification(N). When the execution of the
procedure is finished, N is "popped off" the stack and control returns to N.

 To record values of Pascal variables, M uses a dynamic function V-val. The
domain of V-val contains all raw variables. To record the values of all incarnations
of B.x, V-val maintains a special B.x-stack, a function from an initial segment of
natural numbers to an appropriate type augmented with an additional value
'uninitialized.' Whenever control enters the block B, the value 'uninitialized' is
pushed onto the B.x-stack; and when the execution of B is finished, the top of the
B.x-stack is popped off.

 A dynamic function N-val records (on appropriate nodes of the parse tree) the
results of different subcomputations, in particular the values of different expres-
sions and subexpressions. We use "OK" to indicate the successful execution of a
command. (Another a priori possible result of the execution of a command is
"Error.") Since procedures may be called recursively, N-val assigns a stack of
values to a node. Consider for example the evaluation of (a + b) + f(c) in the body
of a function procedure f. The value of a + b is "hanged" on some node N if
"a + b" is evaluated during the first call on f, then a new value of

www.manaraa.com

Models for Pascal 45

a + b may be "hanged" on the same node N on top of the previous values each time
the recursive call on f is executed, and so on.

 There is also a universe called Space whose elements are called units. In
implementations, a unit may correspond to one byte, to two bytes, or even to a
single bit. A static function Size tells how many units of Space are needed for this
or that purpose, and a dynamic function Available tells how many units of Space
are available.

 That ends our incomplete sketch of M(Prog). We did not specify any transition
rules, did not discuss the parameter mechanism, did not discuss how the input is
provided, etc. The details—for Modula-2 rather than Pascal—will appear in (36).

Notice that we are talking about a whole class PM of Pascal models. What may
distinguish one member of PM from another? The interval of integers, the set of
identifiers, etc. All members have literally the same transition rules. (Transition
rules are given syntactically; they are written once for all members of PM.) The
meaning of a Pascal program Prog is given by dynamic structures M(Prog) where
M varies over those members of PM which contain all identifiers used in Prog.
This is similar to the situation in mathematical logic where the global meaning of a
first-order formula is given by the local meanings of the formula on those
structures whose signatures include that of the formula.

11.3 Three Simple Problems of Meyer

For expository purposes, we allowed ourselves slight modifications of the original
problems. In this subsection, a program means a Pascal program.

Claim 1 (The case of the superfluous statement.)

Let Prog2 be the result of deleting an assignment x := x, where x is an INTEGER
variable, in a program Progl. Then Prog2 is equivalent to Progl.

Claim 2 (The case of the superfluous variable declaration.)

Suppose that a program Progl contains a procedure Progl.P with declaration

PROCEDURE P;

VAR x: INTEGER;

BEGIN

. . .

END;

where the body does not mention x. Let Prog2 be the result of deleting the
declaration of P.x in Progl. Then Prog2 is equivalent to Progl.

www.manaraa.com

46 Logic and the Challenge of Computer Science

Claim 3 (The case of the superfluous procedure declaration.)

 Suppose that a Pascal program Progl has parameter-free procedures Progl.P,
Prog 1.Q and Progl.Q:P such that the declarations of P and Q.P are identical and
the free identifiers of Q.P are not captured within Q. Let Prog2 be the result of
deleting the declaration of Q.P in Progl. Then Prog2 is equivalent to Progl.

Clarification 1 What does it mean to delete an assignment, a variable declaration or
a procedure declaration? To simplify the exposition, we suppose that we are
allowed to use the empty statement, the empty variable declaration and the empty
procedure declaration. Then the deletions can be interpreted as replacements with
appropriate empty objects. Notice that if the assignment was labeled then the new
empty statement is labeled.

Clarification 2 What does it mean that two Pascal programs are equivalent? This is
a complicated question; it will be addressed in the next subsection. In this
subsection two programs will be called equivalent if, provided the necessary
resources, they exhibit the same input-output behavior. In other words, programs
Progl and Prog2 are equivalent if they have the same input domain D, and for
every Pascal model M and every input X in D the following condition is satisfied.
If M contains all identifiers that occur in Progl or Prog2 and if M(Progl),
M(Prog2) do not run out of memory on X then either both structures M(Progl),
M(Prog2) converge on X or both structures diverge on X, but in either case the
structures produce identical outputs on X.

 Claim 1 was already discussed informally. Now let us discuss informally
Claims 2 and 3.

 The case of the superfluous variable declaration. Even though x does not occur
in the body of P, some procedure Q with a free integer variable x may be called
during the execution of P. The free variable x of the procedure Q will be
interpreted as B.x where B is the least block that contains the appropriate dec-
laration of Q and declares an integer variable x. Obviously, B is different from the
block of P, and B.x is different from P.x. So the deletion of the declaration of P.x
won't matter.

 The case of the superfluous procedure declaration. Deleting Q.P means that
calls on Q.P in Progl will be interpreted as calls on P in Prog2. Since P and Q.P
are parameterless procedures with identical declarations, the execution of P can
differ from the execution of Q.P only if the binding declaration of some free
identifier I of P differs from the binding declaration of the free identifier I of Q.P,
which means that Q contains a declaration of I, which means that I is captured
within Q, which is impossible.

www.manaraa.com

Models for Pascal 47

Proof Sketch for Claim 1 Given a machine M, let Mi = M(Progi) and Ti be the
parse tree of Progi. T2 is obtained from T1 by replacing the subtree t1 of an
assignment x:= x with a single-node tree t2 corresponding to the empty statement.
Let T be the common part of T1and T2.

 Call a state of Mi black if its active node is in T, otherwise call it red. (The terms
"black" and "red" are related to the expressions "to be in the black" and "to be in
the red.") Say that a state S1 of Ml and a state S2 of M2 agree if

1. the active nodes of S1 and S2 coincide (which means in particular that both
states are black),

2. the procedure stacks and the V-vals coincide, and

3. the N-vals coincide on T.

 Say that a sequence of states of Ml and a sequence of states of M2 agree if
erasing all red states in both sequences results in two sequences of the same (finite
or infinite) length where the corresponding members agree. It suffices to prove
that the computations (viewed as sequences of states) of Ml and M2 on the same
input agree.

 In the initial states, the active nodes are the roots of the respective parse trees,
and the procedure stacks and the functions V-val, N-val are empty; thus the initial
states agree. Suppose that Si is a black state of Mi, and the states S1, S2 agree.
Then

1. S1 is final (halting) if and only if S2 is so,

2. the successor of S1 is black if and only if the successor of S2 is so,

3. if the successors are black then they agree, and

4. if the successors are red then for neither i is Si the last black state of Mi.

 It remains to prove that if the successors of S1, S2 are red then the first black
state after S1 agrees with the first black state after S2. Let us see what happens
when each Mi goes through the red states following Si. The active node X of Si is
either the parent of root(ti) or the root of the subtree of a goto statement. In either
case the control leaves X without changing the N-val at X. No procedure is called
or exited when Mi goes through the red states, therefore the procedure stack does
not change. The V-val does not change because the only relevant raw variable is
B.x, where B is the block of ti, and the B.x-stack does not change. The restriction
of the N-val to T does not change because, in the absence of procedure calls, the
N-val changes only at the active node. Eventually the control finds its way to the
parent of root(ti), and Mi arrives to some black state Si'. Obviously, S1' and S2'
agree.

www.manaraa.com

48 Logic and the Challenge of Computer Science

Remark One may wonder whether there is any difference between Si and Si'.
The answer is yes. In Si, the top value of the N-val at root(ti) is "undefined";
whereas in Si', the top value of the N-val at root(ti) is "OK."

Proof Sketch for Claim 2 The proof is similar to that of Claim 1. There are only
two important differences. One is related to the definition of agreeing states. The
requirement that the two V-vals coincide is replaced by the requirement that the
two V-vals coincide on the domain of V-vals of M2. The modification is necessary
because the domain of V-vals of Ml contains an additional raw variable P.x.

 The second difference of importance is related to the verification that the black
successors of agreeing states agree. The transition may deal with an integer
variable x, but—as we explained above in the informal discussion—Progl will
never interpret that x as P.x. Moreover, the two programs will interpret x in the
same way. What we need is a separate simple lemma that the two Decl functions
coincide on the common part of the parse trees. •

Proof Sketch of Claim 3 Again, the proof is similar to that of Claim 1. Let Mi =
M(Progi) and Ti be the parse tree of Progi. T2 is obtained from T1 by replacing
the subtree t(Q.P) of the declaration of Q.P with a single-node tree corresponding
to the empty procedure declaration. Let t(P) be the subtree of the declaration of P,
and let T be the common part of T1 and T2.

 This time we do not need red states: when the active node of Ml traverses t(Q.P),
the active node of M2 traverses t(P). One little complication in the proof is that
the corresponding states of Ml and M2 may have somewhat different V-vals (even
though the V-vals have the same domain) and somewhat different restrictions of
the N-vals to T. To overcome this difficulty, we introduce extended stacks. The
extended stacks are imaginary, they are not parts of our Pascal models.

 Let B. x be an arbitrary raw variable of an arbitrary M(Prog). The V-val of
M(Prog) maintains a B.x-stack. The extended B .x-stack is the B.x-stack possibly
"diluted" with copies of a new item 'empty'. Whenever a block different from B is
called, a copy of 'empty' is pushed on the extended B.x-stack, and whenever any
block is exited, the top of the extended B.x-stack is popped off. The N-val assigns
stacks of values to nodes; the corresponding extended stacks are defined in a
similar way.

 Consider the extended stacks of two raw variables B1.x and B2.x, where the
blocks B1 and B2 are different. It is impossible that for some i, the extended stacks
have i-th items that are both different from 'empty'. This allows us to merge the
two extended stacks into a new stack whose height is the minimum of the heights
of the two given stacks. Suppose that u is the i-th item of the extended B1.x-stack
and v is the i-th item of the extended B2.x-stack. What is

www.manaraa.com

Models for Pascal 49

the i-th item w in the new stack? If u differs from 'empty' then w = u; if v differs
from 'empty' then w = v; otherwise w is 'empty.'

 Now we are ready to define agreeing states. A state S1 of Ml agrees with a state
S2 of M2 if the following conditions (a)-(d) are satisfied.

(a) Either the active node of S1 coincides with the active node of S2, or the active
node of S1 is in t(Q.P) and the corresponding node of t(P) is active in S2.

(b) The procedure stacks of S1 and S2 coincide.

(c) For every raw variable B.x, declared within the block of P, the extended B.x-
stack of S2 is the merger of the exttended B.x-stack and the extended Q.B.x-stack
of S1. For every other raw variable C.y, the C.y-stacks of S1 and S2 coincide.

(d) For every node N in T-t(P) the N-stacks of S1 and S2 coincide. If N belongs to
t(P) and N' is the corresponding node in t(Q.P) then the extended N-stack of S2 is
the merger of the extended N-stack of S1 and the extended N-stack of S1.

 It is easy to check now that for every input I, the computation of Ml on I
and the computation of M2 on I have the same length, and the corresponding
members agree. It follows that Progl and Prog2 are equivalent. ■

11.4 Final Remarks

11.4.1 Equivalent Programs

Let us address the question

 (*) When do two Pascal programs have the same meaning?

The equivalence relation of Section 11.3 is one answer to (*). Under certain
circumstances it may be unsatisfactory. Imagine that Progl and Prog2 solve the
same NP problem and are equivalent in the sense of Section 11.3, but Progl works
in linear time whereas Prog2 works in exponential time. It does not seem right to
consider them as having the same meaning. One may refine the equivalence
relation of Section 11.3 to give different answers to (*). One may require, for
example, that the computations of Progl and Prog2 simulate each other in real
time, or that the histories of global variables are identical. (The proof of each of
the three claims above establishes both stronger equivalences.)

 We think that there are many reasonable answers to (*) and that an appropriate
answer depends on the circumstances.

 It is interesting to compare question (*) with the similar question for first-order
formulas. The standard answer to the latter question is that two first-order

www.manaraa.com

50 Logic and the Challenge of Computer Science

formulas have the same meaning if and only if they are logically equivalent (i.e.,
define the same global relation). This ignores the computational aspect of for-
mulas, in particular the cost of computing corresponding relations.

11.4.2 Distinguishing Features of the Proposed Semantics

Ellis Horowitz writes [(43), Section 2.1]: "Interpretative semantics begins by
defining an abstract machine. This machine supports a simple set of operations and
data structures. Then the semantics of the language being defined is given by a set
of rules which show how programs will be translated onto the abstract machine.
The Vienna Definition Language (70), which was developed as a means for
formally defining PL/1, is the prime example of this approach." Our semantics is
interpretative (or operational) because of the use of abstract machines, but it is
somewhat different.

1. We define a family of abstract machines with bounded resources rather than one
abstract machine with unbounded resources. Each machine gives a local meaning
to a program, and the family gives the global meaning. (From that point of view,
the semantics can be called global or multi-model.) Multi-model semantics is
especially appropriate to handle implementation defined constants. (If your Pascal
model has all integers then what is the meaning of MAXINT?) As a matter of fact,
the presence of implementation defined constants makes modeling easier.

2. We tailor our machines to the given language (rather than translate the given
language to the fixed language of a unique abstract machine). In this section, we
described Pascal machines. We considered also models for different variations and
extensions of Pascal (in particular, to check that passing a simple variable by name
has the same effect as passing it by reference). In (36), we describe Modula-2
machines. We intend to model languages for parallel and distributing computing,
and different other languages.

3. Our machines are algebraic structures of a sort, namely dynamic structures. (We
would call the proposed semantics algebraic if the term were not taken (27).) To
explain what we mean by the algebraic character of our models, let us point out
the difference between usual algebraic structures, say graphs, and their
representations. One does not care about the nature of the vertices, may not have
unique names for the vertices, does not distinguish between isomorphic graphs.
Similarly, we do not care about the nature of the elements of our models, may not
have unique names for the elements, do not distinguish between isomorphic
models. (For example, for any member M of the class PM of Pascal models, any
permutation of identifiers gives rise to an automorphism of M.)

www.manaraa.com

Two-Way Multihead Automata 51

11.4.3 Solicitation

The examples above suggest using the proposed semantics for proving general
properties of programs and correctness of different transformations (like source-to-
source transformations employed by optimizing compilers). Dealing with two
models of different levels of abstraction, we use the approach for proving cor-
rectness of source-to-target transformations (36). A related theoretical problem is
to work out a useful notion of homomorphism of dynamic structures.

 We are soliciting interesting and challenging problems about Pascal or other
(real or imaginary) imperative languages. We are especially interested in problems
related to limited resources.

APPENDIX. TWO-WAY MULTIHEAD AUTOMATA

A two-way multihead automaton can be described as a multihead Turing machine
without any work tape. It is well-known that, as recognizing devices, deterministic
(respectively, nondeterministic) two-way multihead automata are equivalent to
deterministic (respectively nondeterministic) log-space bounded Turing machines.
Hartmanis and Hunt say in their 1974 paper (39) that this is a well-known fact and
refer for a more complete proof to a 1972 paper of Hartmanis. It is also well-
known that the equivalence survives if alternation is allowed. For reader's
convenience, we prove here these facts.

Remark To accommodate naturally standard representations of structures (see
§1), we allow Turing machines and two-way multihead finite automata to have
several input tapes. One of these input tapes is the universe tape that contains the
unary notation for the cardinality of the given structure. We will ignore structures
of cardinality 1, and will suppose that the end-cells of the universe tape are
specially marked.

Theorem 1.20 A global relation is recognizable in log-space by a deterministic
(respectively nondeterministic, alternating) Turing machine if and only if it is
recognizable by a deterministic (respectively nondeterministic, alternating) two-
way multihead finite automaton.

Proof The "if" implication is easy (and will not be used): record the current
positions of the automaton heads on a work tape.

 To prove the "only if" implication, suppose that a log-space bounded Turing
machine M recognizes the global relation in question. Let n be the length of the
universe tape. Without loss of generality, we can assume the following about

www.manaraa.com

52 Logic and the Challenge of Computer Science

M: it has only one work tape, on each step the work tape head either writes or
moves but not both, the work tape alphabet is {0,1} where 0 is also the blank, the
end cells of the work tape never hold zeros, initially the head of the work tape is in
the leftmost position, and a configuration of M is accepting if and only if the
corresponding internal state is one of the specially designated accepting states.

 Let u be the content of the initial segment of the current work tape up to and
including the position of the head, v* be the content of the corresponding final
segment, and v be the reverse of v*. The strings u and v are binary notations for
some numbers that uniquely define the content of work tape. The symbol observed
by the work tape head is exactly the parity of u (0 if u is even and 1 otherwise). If
the work tape head changes 0 to 1 (respectively 1 to 0) then u:= u + 1
(respectively u:= u - 1) and v does not change. If the work tape head moves to the
right then u:= 2u + δ and v:= (v - δ)/2 where δ is the parity of v. If the work tape
head moves to the left then u:= (u- δ)/2 and v:= 2v + δ where δ is the parity of u.

 Since the length of the work tape is bounded by a multiple of log n, the numbers
u and v are bounded by some nk. Thus,

 u = ∑i<k αin
i and v = ∑i<k βin

i

where αi, βi < n for each i. The desired two-way multihead automaton A rep-
resents u and v by 2k heads on the universe tape. Using a few auxiliary heads,
A is able to compute the parities of u, v and to perform the operations u:= u + 1,
u:= u - l, u:= 2u + parity(v), v:= [v - parity(v)]/2, etc. mentioned above.
 Some internal states of A code the internal states of M, in addition A has
auxiliary internal states. When A is in the internal state q' coding an internal
state q of M, the configuration of A codes a configuration of M; if q is existential
(respectively universal) then so is q'. The auxiliary internal states of A are de
terministic. If M starts in the initial configuration C0 and goes through subsequent
configurations C1, C2, etc. then A starts in the initial configuration coding C0,
goes through a series of configurations with auxiliary internal states and arrives
to the configuration coding C1, goes through a series of configurations with
auxiliary internal states and arrives to the configuration coding C2, etc. A con
figuration of A is accepting if and only if it codes an accepting configuration of
M. It is easy to see that A accepts a given structure if and only if M accepts
it. ■

Corollary A global relation is polynomial time recognizable if and only if it is
recognizable by an alternating two-way multihead finite automaton.

Proof Polynomial time equals alternating log-space (13). ■

www.manaraa.com

Two-Way Multihead Automata 53

 Let us consider more closely the computation of a two-way multihead automaton
A that recognizes a global relation ρ. A can be deterministic, nondeterministic or
alternating. Represent the position of a head h on a tape of length np by p-tuple
xh0, . . . , xh(p-1) with the intended interpretation ∑xhi•n

i. Here n is the length of the
universe tape and each xhi is a natural number <n. Further, represent the j-th
internal state of the automaton by a q-tuple y1, . . . , yq where q is the number of
internal states, yj = 1 and yi = 0 for i ≠ j. Thus there is an r such that every
configuration of A is represented by an r-tuple of natural numbers <n. Without
loss of generality, we may assume that A has a unique accepting configuration and
that both in the initial and in the accepting configuration of A all heads are in the
leftmost positions. Then the r-tuples Initial and Final, representing the initial and
the final configurations respectively, consist of zeros and ones.

Claim There is an FO + < formula Next satisfying the following. Let S be a
structure in the domain of ρ, w be a tuple of elements of S whose length equals the
arity of ρ, and x, y be r-tuples of elements of the universe of S. Then Next(w,x, y)
holds in S if and only if x, y represent configurations of A on inputs (S, w) and A is
able to go from configuration x to configuration y in one step.

Proof The desired formula Next is a conjunction where each conjunct describes
(in the obvious way) one instruction of A. (The variables w appear since there
are reading heads on the corresponding input tapes.) •

Remark The formula Next is especially simple if one uses the successor function
(rather than order) and individual constants 0 and End. If the universe is {0, . . . ,
n - 1} then End is interpreted as n - 1. To make the successor function total,
define Successor(End) = 0 or Successor(End) = End.

 In the rest of Appendix, a global function is a partial a-global function of type
Universep → Universeq for some σ, q, p; such global function assigns to each
σ-structure S a p-ary q-coary operation on the universe of S. Two-way multihead
automata were defined as Turing machines without working tapes. They may have
output tapes however.

Theorem 1.21 A global function is computable by a deterministic log-space
bounded Turing machine if and only if it is computable by a deterministic two-
way multihead automaton.

Proof Essentially the same proof as that of Theorem 1.20. If the simulated
Turing machine M writes on an output tape in a configuration x then the
simulating automaton A does the same in the configuration that codes x. ■

www.manaraa.com

54 Logic and the Challenge of Computer Science

REFERENCES

1. Aho, A. V., J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, 1974.

2. Aho, A. V. and J. D. Ullman, "Universality of data retrieval languages," 6thPOPL Symp.,
ACM, 1979, 110-117.

3. Ajtai, M., "∑1
1-formulae on finite structures," Annals of Pure and Applied Logic 24

(1983), 1-48.

4. Ajtai, M. and Y. Gurevich, ''Monotone versus positive,'' Journal of ACM, to appear.

5. Arvind, V. and S. Biswas, "Expressibility of first-order logic with a nondeterministic
inductive operator," Manuscript, Indian Institute of Technology, Kanpur, India, May 1986.

6. de Bakker, J. W., Mathematical Theory of Program Correctness. Prentice-Hall, 1980.

7. Blass, A., Private communication.

8. Blass, A. and Y. Gurevich, "Henkin quantifiers and complete problems," Annals of Pure
and Applied Logic, 32 (1986), 1-16.

9. Blass, A. and Y. Gurevich, "A new thesis" (tentative title), in preparation.

10. Blass, A., Y. Gurevich and D. C. Kozen, "A zero-one law for logic with a fixed-point
operator," Information and Control 67 (1985), 70-90.

11. Börger, E. and Y. Gurevich, "On fixed-point extensions of first-order logic"

(tentative title), in preparation.

12a. Chandra A. K. and D. Harel, "Computable queries for relational data bases," J.

Comput. and System Sciences 21 (1980), 156-178.

12b. Chandra, A. K. and D. Harel, "Structure and complexity of relational queries,"

J. Comput. and System Sciences 25 (1982), 99-128.

13. Chandra, A. K., D. C. Kozen and L. J. Stockmeyer, "Alternation," J. of Association for
Computing Machinery 28 (1981), 114-133.

14. Church, A., "An unsolvable problem of elementary number theory," American Journal
of Mathematics 58 (1936), 345-363.

15. Codd, E. F., "Relational completeness of database sublanguages," in Database Systems
(ed. R. Rustin), Prentice-Hall, 1972, 65-98.

16. Compton, K., "The computational complexity of asymptotic problems I: partial orders,"
Information and Control, to appear.

17. Denenberg, L., Y. Gurevich and S. Shelah, "Cardinalities defined by constant depth
polynomial size circuits," Information and Control 70 (1986), 216-240.

18. Ebbinghaus, H.-D., J. Flum and W. Thomas, Mathematical Logic, Springer-Verlag,
New York, 1984.

19. Ehrenfeucht, A., "An application of games to the completeness problem for formalized
theories," Fund. Math. 49 (1961), 129-141.

20. Fagin, R., "Generalized first-order spectra and polynomial time recognizable sets,"
SIAM-AMS Proc. 7 (1974), 43-73.

21. Fagin, R., "Monadic generalized spectra," Zeitschrift fur Math. Logik und Grund-lagen
der Mathematik 21 (1975), 89-96.

22. Fagin, R., M. Klawe, N. J. Pippenger, and L. Stockmeyer, "Bounded depth polynomial
size circuits for symmetric functions," Theoretical Computer Science, April 1985, 239-250.

www.manaraa.com

References 55

23. Gaifman, H. and M. Vardi, "A simple proof that connectivity of finite graphs is not
first-order definable," Bulletin of European Assoc. for Theoretical Computer Science, June
1985, 43-45.

24. Gandy, R., "Church's thesis and principles for mechanisms," in: The Kleene
Symposium (ed. J. Barwise et al.), North-Holland, 1980, 123-148.

25. Garey, M. R. and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP Completeness, Freeman, 1979.

26. Gries, D., The Science of Programming, Springer-Verlag, 1981.

27. Guessarian, L, "Algebraic semantics," Lecture Notes in Computer Science 99, Springer-
Verlag, 1981.

28. Gurevich, Y., "Algebras of feasible functions," 24th Symposium on Foundations of
Computer Science, IEEE Computer Society Press, 1983, 210-214.

29. Gurevich, Y., "Toward logic tailored for computational complexity," in Computation
and Proof Theory (Ed. M. M. Richter et al.), Springer Lecture Notes in Math. 1104(1984),
175-216.

30. Gurevich, Y., "Monadic second-order theories," in Model-Theoretical Logics (ed. J.
Barwise and S. Feferman), Springer-Verlag, 1985, 479-506.

31. Gurevich, Y., "Reconsidering Turing's thesis (toward more realistic semantics of
programs)," Technical Report CRL-TR-36-84, University of Michigan, Sep. 1984.

32. Gurevich, Y., "Logic and the challenge of computer science," Technical Report CRL-
TR-10-85, University of Michigan, Sep. 1985.

33. Gurevich, Y., "A new thesis," AMS Abstracts, Aug. 1985, p. 317.

34. Gurevich, Y., "Algorithms in the world of bounded resources," in The Universal Turing
Machine—A Half-Century Survey (ed. R. Herken), Oxford University Press, to appear.

35. Gurevich, Y. and H. R. Lewis, "A logic for constant-depth circuits," Information and
Control 61 (1984), 65-74.

36. Gurevich, Y. and J. M. Morris, "Pragmatic semantic for Modula-2," (tentative title), in
preparation.

37. Gurevich, Y. and S. Shelah, "Fixed-point extensions of first-order logic," Annals of
Pure and Applied Logic 32 (1986), 265-280.

38. Gurevich, Y. and S. Shelah, "Fixed-point extensions of first-order logic," 26th Annual
Symp. on Foundation of Computer Science, IEEE Computer Society Press, 1985, 346-353.

39. Hartmanis, J. and H. B. Hunt, "The LBA problem and its importance in the theory of
computing," SIAM-AMS Proc., vol. 7 (1974), 1-26.

40. Hartmanis, J. and N. Immerman, "On complete problems for NP∩coNP," Lecture Notes
in Computer Science 194 (1985), Springer-Verlag, 250-259.

41. Hayes, J. P., "Uncertainty, energy, and multiple-valued logics," IEEE Trans. on
Computers, vol. C-35 (1986), 107-114.

42. Henkin, L., "Some remarks on infinitely long formulas," in Infinitistic Methods,
Warsaw, 1961, 167-183.

43. Horowitz, E., Fundamentals of Programming Languages, Computer Science Press,
1983.

44. Immerman, N., "Relational queries computable in polynomial time," 14th Symposium
on Theory of Computing, Association for Computing Machinery, 1982, 147-152.

www.manaraa.com

56 Logic and the Challenge of Computer Science

45. Immerman, N., "Languages which capture complexity classes," 15th Symposium on
Theory of Computing, Association for Computing Machinery, 1983, 347-354.

46. Jensen, K. and N. Wirth, Pascal, User Manual and Report, Springer-Verlag, 2nd
edition, 1978.

47. Kleene, S. C., Introduction to Metamathematics, D. Van Nostrand, New York, Toronto,
1952.

48. Kolmogoroff, A. N. and V. A. Uspenski, "On the definition of an algorithm,"
UspekhiMat. Nauk 13 (1958), 3-28 (Russian), AMS Transl. 29 (1963), 217-245.

49. Krom, M. R., "The decision problem for a class of first-order formulas in which all
disjunctions are binary," Zeitschrift fur math. Logik und Grundlagen der Math-ematik 13
(1967), 15-20.

50. Kuratowski, K., Topology, volume 1, Academic Press, 1966.

51. Lindstrom, P., "On extensions of elementary logic," Theoria 35 (1969), 1-11.

52. Livchak, A., "The relational model for process control," Automatic Documentation and
Mathematical Linguistics 4 (1983), 27-29.

53. Lyndon, R., "An interpolation theorem in the predicate calculus," Pacific J. Math. 9
(1959), 155-164.

54. Moschovakis, Y. N., Foundations of the Theory of Algorithms, I, Manuscript, Uni-
versity of California, Los Angeles, 1986.

55. Plotkin, G. D., "Structural approach to operational semantics," Technical report
DAIMIFN-19, Computer Science Department, Aarhus University, Denmark, Sept. 1981.

56. Reynolds, J. C., The Craft of Programming, Prentice-Hall, 1981.

57. Sazonov, V. Y., "Polynomial computability and recursivity in finite domains,"
Elektronische Informationverarbeitung und Kybernetik 16 (1980), 319-323.

58. Schoenhage, A., "Storage modification machines," SIAMJ. on Computing 9 (1980),
490-508.

59. Sipser, M., "On relativization and the existence of complete sets," ICALP 1982, 523-
531.

60. Sipser, M., "Borel sets and circuit complexity," 15th ACM Symposium on Theory of
Computing (1983), 61-69.

61. Stoy, I.E., "Denotational semantics: The Scott-Strachey Approach to Programming
Language Theory," MIT Press, Cambridge, Mass., 1977.

62. Tarski, A., "Some notions and methods on the borderline of algebra and meta-
mathematics," Proc. 1950 International Congress of Mathematicians, Cambridge, MA,
AMS, 1952, 705-720.

63. Tennent, R. D., Principles of Programming Languages, Prentice-Hall International,
1981.

64. Trakhtenbrot, B. A., "Impossibility of an algorithm for the decision problem on finite
classes," Doklady 70 (1950), 569-572.

65. Trakhtenbrot, B., J. Y. Halpern and A. R. Meyer, ' 'From denotational to operational and
axiomatic semantics for ALGOL-like languages: an overview," Lecture Notes in Computer
Science, Volume 164, Springer-Verlag, 1983.

66. Turing, A. M., "On computable numbers, with an application to the Entscheidungs-
problem," Proc. of London Mathematical Society 2, no. 42 (1936), 230-236, and no. 43
(1936), 544-546.

www.manaraa.com

References 57

67. Ullman, J. D., Principles of Database Systems, Computer Science Press, 1982.

68. Vardi, M., "Complexity of relational query languages," 14th Symp. on Theory of
Computing, ACM, 1982, 137-146.

69. Walkoe, W., "Finite partially-ordered quantification," Journal of Symbolic Logic 35
(1970), 535-555.

70. Wegner, P., ' 'The Vienna Definition Language,'' ACM Computing Surveys 4 (1972), 5-
63.

71. Wirth, N., Programming in Modula-2, 3rd edition, Springer-Verlag, 1985.

